Polyoxometalate Photocatalysis

Thomas Brewer MacMillan Group Meeting December 13, 2017

What are polyoxometalates (POMs)?

- $\blacksquare \ge 3$ transition metal oxyanions linked by shared oxygen atoms
- closed, 3-dimensional frameworks
- typically group 6 (Mo, W) and group 5 (V, Nb, Ta)
- type I & III POMs shown to be reversibly reduced to "heteropoly blues"

Outline

POM synthesis

- can include heteroatoms "X" to form hetero-POMs
- frequently involve equilibria between several POMs
- controlled by pH, counterion identity, temperature, cosolvent, M/X ratio

Type I POMs have rich redox chemistry

 $MOL_5 MO$ diagram (C_{4v} , no xy π -bonding)

TM atoms in highest (d^0) oxidation state \Rightarrow POMs act as oxidants

- Type I POMs have formally nonbonding LUMO (b₂)
- In type II POMs, former d_{xy} orbital is π^*

POM photoredox reactivity

- Potentials are very approximate^c
- V, Mo POMs strong oxidants, but difficult to re-oxidize to a^0
- V, Mo POMs can be sufficiently oxidizing in ground state to react with oxidizable intermediates
- POMs typically show long (100s of nm), tailing absorbance

^apotential vs. NHE I ^birreversible reduction I ^cvarious reference electrodes and experimental conditions; literature not in agreement De Waele, V., Poizat, O., Fagnoni, M., Bagno, A., Ravelli, D. *ACS Catal.*, **2016**, *6*, 7174 Hou, D., Hagen, K. S., Hill, C. L., *J. Am. Chem. Soc.*, **1992**, *114*, 5864 *Polyoxometalate Molecular Science*; Almenar-Borras, J. J., Coronado, E., Muller, A., Pope, M., Eds.; Springer: Dordrecht, 2003

A closer look at decatungstate photochemistry

■ after excitation, fast ($\tau \sim 10 \text{ ps}$) ISC yields the reactive ${}^{3}\text{T}_{1}$ state

³T₁ HOMO-1 has highest (accessible) density on apical oxo ligands

Singly-reduced $[HW_{10}O_{32}]^{4-}$ can disproportionate to $[W_{10}O_{32}]^{4-}$ and $[H_2W_{10}O_{32}]^{4-}$

^apotential vs. SCE De Waele, V., Poizat, O., Fagnoni, M., Bagno, A., Ravelli, D. *ACS Catal.* **2016**, *6*, 7174 Yamase, T., Takabayashi, N., Kaji, M. *J. Chem. Soc. Dalton Trans.* **1984**, 793 Decatungstate redox potentials vary widely

strongly dependent on solvent

strongly dependent on protonation state

^apotential vs. Ag/AgCl I protonation-dependent CV potentials vs. Ag/AgNO₃ Renneke, R. F., Kadkhodayan, M., Pasquali, M., Hill, C. L. *J. Am. Chem. Soc.* **1991**, *113*, 8357 Yamase, T., Takabayashi, N., Kaji, M. *J. Chem. Soc. Dalton Trans.* **1984**, *0*, 793

POM photoredox catalysis

Fox, M. A., Cardona, R., Gaillard, E. *J. Am. Chem. Soc.* **1987**, *109*, 6347 Papaconstantinou, E. *Chem. Soc. Rev.* **1989**, *18*, 1

Polyoxometalate Molecular Science; Almenar-Borras, J. J., Coronado, E., Muller, A., Pope, M., Eds.; Springer: Dordrecht, 2003

Site selectivity in decatungstate-mediated C–H abstraction

^aMichael addition I ^boxygenation I decatungstate chemdraw provided by Ian Perry Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T., Ryu, I. *ACS Catal.* **2017**, *just accepted*

Site selectivity in decatungstate-mediated C–H abstraction

^aMichael addition I decatungstate chemdraw provided by Ian Perry Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T., Ryu, I. ACS Catal. **2017**, just accepted Outline

Early work in decatungstate-catalyzed C–H oxygenation

Further studies on decatungstate-catalyzed C–H oxygenation

Tzirakis, M. D., Lykakis, I. N., Orfanopoulos, M. Chem. Soc. Rev., 2009, 38, 2609

Oxyfunctionalization of remote C–H bonds of aliphatic amines

Oxyfunctionalization of remote C–H bonds of aliphatic amines

^aAY = assay yield before derivitization; IY = isolated yield after derivitization Schultz, D. M., Davies, I. W., *et al. Angew. Chem. Int. Ed.* **2017**, *56*, 15274

TBADT-catalyzed fluorination of unactivated C–H bonds

synergistic H atom transfer/F atom transfer

■ fluorinates C–H bonds potentially prone to oxidative metabolism

TBADT-catalyzed fluorination of unactivated C–H bonds

TBADT-catalyzed fluorination of leucine on large scale

Iarge scale for the synthesis of odanacatib (development now discontinued)

previously processes required 2-6 steps (F introduced by alkene or epoxide hydrofluorination)

Early work in TBADT-catalyzed C–C bond-forming reactions

Jaynes, B. S., Hill, C. L. *J. Am. Chem. Soc.*, **1993**, *115*, 12212 Jaynes, B. S., Hill, C. L. *J. Am. Chem. Soc.*, **1995**, *117*, 4704 Zheng, Z., Hill, C. L. *Chem. Commun.*, **1998**, 2467 Hill, C. L. *Synlett*, **1995**, *1995*, 127

TBADT-catalyzed acetylation

rare example of a carbanion intermediate in POM photoredox

product deactivated toward further functionalization

TBADT-catalyzed alkylation of electrophilic alkenes

- nucleophilic alkyl radicals trapped efficiently by electrophilic alkenes
- complete conversion
- Φ ranges from 0.06–0.58 depending on alkyl radical nucleophilicity

Dondi, D., Fagnoni, M., Molinari, A., Maldotti, A., Albini, A. *Chem. Eur. J.* **2004**, *10*, 142 Dondi, D., Fagnoni, M., Albini, A. *Chem. Eur. J.* **2006**, *12*, 4153

TBADT-catalyzed alkylation of electrophilic alkenes

electrophilic radical turns over [HW₁₀O₃₂]⁴⁻ by SET

Dondi, D., Fagnoni, M., Molinari, A., Maldotti, A., Albini, A. *Chem. Eur. J.* **2004**, *10*, 142 Dondi, D., Fagnoni, M., Albini, A. *Chem. Eur. J.* **2006**, *12*, 4153

Further studies on TBADT-catalyzed alkylation of electrophilic alkenes

Scope has been extended to many classes of C–H nucelophile

Site selectivity is governed by a combination of steric and polar effects

Ravelli, D., Protti, S., Fagnoni, M., Acc. Chem. Res. 2016, 49, 2232 Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T., Ryu, I. ACS Catal. 2017, just accepted

TBADT-catalyzed cross-dehydrogenative coupling

Quattrini, M. C., Fujii, S., Yamada, K., Fukuyama, T., Ravelli, D., Fagnoni, M., Ryu, I. Chem. Commun. 2017, 53, 2335

TBADT-catalyzed cross-dehydrogenative coupling

Quattrini, M. C., Fujii, S., Yamada, K., Fukuyama, T., Ravelli, D., Fagnoni, M., Ryu, I. Chem. Commun. 2017, 53, 2335

A final comment on visible light-excitable POMs

Visible light photocatalysis with polyoxovanadates

- in situ thermal conversion of $\{V_4\}$ to $\{V_5\}$ allows visible light photoredox catalysis
- I turnover by O_2 is quite slow (weeks), but turnover by H_2O_2 is fast (seconds)

Visible light photoredox catalysis with heteropolyoxovanadates

UV/vis spectra

explored for oxidation of pollutants

indigo (model pollutant)

• $\Phi \sim 2\%$ for photooxidation of indigo at $\lambda_{ex} = 450$ nm

POM-photosensitizer co-catalyzed water oxidation

- POM catalysis can be coupled to external photoredox processes
- [Ru(bpy)₃]²⁺ acts as electron shuttle between Co-POM and stoichiometric oxidant