Transition Metals Mediated Fluorination of Arenes and Heteroarenes

Why Would You Want to Fluorinate an Arene?

Aryl fluorides are present in a wide range of pharmaceuticals

40 fluroine containing drugs introduced to market between 2001 and 2011 ~30% of pharamaceuticals contain at least one fluorine atom

Why Would You Want to Fluorinate an Arene?

Tradition methods are not compatible with complex functionality

Mild methods for the selective introduction of fluorine to complex molecules remains challenging

Müller, K.; Faeh, C.; Diederich, F. *Science* **2007**, *317*, 1881. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* **2008**, *37*, 320.

Transition Metals Mediated Fluorination of Arenes and Heteroarenes

1. Palladium Catalyzed Processes

- The challenges facing transition metal catalyzed fluorination
- •First example of C–F bond formation by reductive elimination
- •Buchwalds catalytic fluorination using nucleophilic fluoride

2. Copper Catalyzed and Mediated Processes

- •Copper mediated halogen exchange
- •Sanford's catalytic fluorination of aryl iodoniums
- •Sanford's Chan-Evans-Lam

3. Silver Catalyzed and Mediated Processes

- •Oxidative fluorination of aryl nucleophiles
- •Hartwig's Chichibabin inspired fluorination of heteroarenes
- 4. Ritter's oxidative fluorination of aryl nickel complexes
- 5. Ritter's radical fluorination of aryl potassium trifluoroborates

Challenges Facing Transition Metal Catalysis

Reductive elimination to from the C–F bond is kinetically difficult

Competing reductive elimination involving the ligand had been a long standing problem

Grushing, V. V. *Chem. Eur. J.* **2002**, *45*, 2720. Grushin, V. V.; Marshall, W. J. *Organometallics*. **2007**, *26*, 4997.

Reductive elimination from a highly oxidising metal center proved to be fruitful

Reductive elimination from a highly oxidising metal center proved to be fruitful

Reductive elimination from a highly oxidising metal center proved to be fruitful

Reductive elimination from a highly oxidising metal center proved to be fruitful

Reductive elimination from a highly oxidising metal center proved to be fruitful

C-H activation – Limited Substrate Scope

Ritter technology – Controllable regioselectivity but stiochiometric in Palladium

Hull, K. L.; Anani, W. Q.; Sanford, M. S. *J. Am. Chem. Soc.* 2006, *128*, 7134.
Furuya, T.; Kaiser, H. M.; Ritter, T. *Angew. Chem. Int. Ed.* 2008, *47*, 5993.
Wang, X.; Mei, T. -S.; Yu, J. –Q. *J. Am. Chem. Soc.* 2009, *131*, 7520.
Chan, K. S. L.; Wasa, M.; Wang, X.; Yu, J. –Q. *Angew. Chem. Int. Ed.* 2011, *50*, 9081.

Reductive elimination from Pd(II) is challenging

Reductive elimination from Pd(II) is challenging

After working on this problem for ~10 years -

"Our work has shown that conventional tertiary phosphines, which are most widely used for Pd catalysis, are unlikely to be useful for the desired C–F bond formation at the metal center"

-Grushin 2007

Grushin, V. V.; Marshall, W. J. *Organometallics.* 2007, *26*, 4997. Watson, D. A.; Su, M.; Teverovskiy G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwalk, S. L. *Science*, 2008, 325, 1661. Grushin, V. V.; *Acc. Chem. Res.* 2010, *43*, 160.

Reductive elimination from Pd(II) is challenging

After working on this problem for ~10 years -

"Our work has shown that conventional tertiary phosphines, which are most widely used for Pd catalysis, are unlikely to be useful for the desired C–F bond formation at the metal center"

-Grushin 2007

Grushin, V. V.; Marshall, W. J. *Organometallics.* 2007, *26*, 4997. Watson, D. A.; Su, M.; Teverovskiy G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwald, S. L. *Science*, 2008, 325, 1661. Grushin, V. V.; *Acc. Chem. Res.* 2010, *43*, 160.

 Watson, D. A.; Su, M.; Teverovskiy G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science, 2008, 325, 1661. Lee, H. G.; Milner, P. J.; Buchwald, S. L. Org. Lett. 2013, 15, 5602.
 Lee, H. G.; Milner, P. J.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 3792.
 Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Muller, P.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 13433. Milner, P. J.; Yang, Y.; Buchwald, S. L. Organometallics. 2015, 34, 4775.

Interesting Observations – Rational Ligand Design

The reaction suffers from an induction period with destruction of the ArOTf susbtrate

Watson, D. A.; Su, M.; Teverovskiy G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwald, S. L. *Science*, 2008, 325, 1661.
 Maimone, T. J.; Milner, P. J. Kinzel, T.; Zhang, Y.; Takase, M. K.; Buchwald, S. L. *J. Am. Chem. Soc.* 2011, 133, 18106.
 Milner, P. J.; Kinzel, T.; Zhang, Y.; Buchwald, S. L. *J. Am. Chem. Soc.* 2014, 136, 15757.
 Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Muller, P.; Buchwald, S. L. *J. Am. Chem. Soc.* 2015, 137, 13433.

Interesting Observations – Rational Ligand Design

2,6-dideutared aryl triflates show improved regioselecitivity compared to there non deuterated analogues

Watson, D. A.; Su, M.; Teverovskiy G.; Zhang, Y.; Garcia-Fortanet, J.; Kinzel, T.; Buchwald, S. L. Science, 2008, 325, 1661.
 Maimone, T. J.; Milner, P. J. Kinzel, T.; Zhang, Y.; Takase, M. K.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 18106.
 Milner, P. J.; Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 15757.
 Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Muller, P.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 13433.

Rational Ligand Design

Internal H-bonding interaction stabilizes fluoride ligand – retards reductive elimination

This complex reductively eliminates at room temperature !

State of the art technology

Sather, A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Muller, P.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 13433.

Transition Metals Mediated Fluorination of Arenes and Heteroarenes

1. Palladium Catalyzed Processes

- The challenges facing transition metal catalyzed fluorination
- •First example of C–F bond formation by reductive elimination
- •Buchwalds catalytic fluorination using nucleophilic fluoride

2. Copper Catalyzed and Mediated Processes

- •Copper mediated halogen exchange
- •Sanford's catalytic fluorination of aryl iodoniums
- •Sanford's Chan-Evans-Lam
- 3. Silver Catalyzed and Mediated Processes
 - •Oxidative fluorination of aryl nucleophiles
 - •Hartwig's Chichibabin inspired fluorination of heteroarenes
- 4. Ritter's oxidative fluorination of aryl nickel complexes
- 5. Ritter's radical fluorination of aryl potassium trifluoroborates

Reactions I'm not going to talk about in depth – Copper Mediated

Hartwig – 2012

Reactions I'm not going to talk about in depth – Copper Mediated

Sanford - 2013

Sanford – 2013

Ye, Y.; Schimler, S. D.; Hanley, P. S.; Sanford, M. S. *J. Am. Chem. Soc.* **2013**, 135, 16292. Ye, Y.; Sanford, M. S *J. Am. Chem. Soc.* **2013**, 135, 4848.

All of these methods are super-stoichiometric in copper – Copper Fluoride is prone to disproportionation

Complexation can stabilized Cu(I) fluorides but heating induces disproportionation

Sanford – 2013 First Method Catalytic in Copper

Sanford – 2013 First Method Catalytic in Copper

t-Bu

Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Org. Lett.* **2013**, *15*, 5134. Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Organometallics* **2014**, *33*, 5525. Grushin, V. V.; Demkina, I. I.; Tolstaya, T. P. *J. Chem. Soc., Perkin Trans.* **21992**, 505.

Sanford – 2013 First Method Catalytic in Copper

Cu(I) is formed in situ

Concentration of fluoride is kept low due to insolubility of KF in DMF

Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Org. Lett.* **2013**, *15*, 5134. Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Organometallics* **2014**, *33*, 5525. Grushin, V. V.; Demkina, I. I.; Tolstaya, T. P. *J. Chem. Soc., Perkin Trans. 2* **1992**, 505.

Transition Metals Mediated Fluorination of Arenes and Heteroarenes

1. Palladium Catalyzed Processes

- The challenges facing transition metal catalyzed fluorination
- •First example of C–F bond formation by reductive elimination
- •Buchwalds catalytic fluorination using nucleophilic fluoride

2. Copper Catalyzed and Mediated Processes

- •Copper mediated halogen exchange
- Sanford's catalytic fluorination of aryl iodoniums
- •Sanford's Chan-Evans-Lam

3. Silver Catalyzed and Mediated Processes

- •Oxidative fluorination of aryl nucleophiles
- •Hartwig's Chichibabin inspired fluorination of heteroarenes
- 4. Ritter's oxidative fluorination of aryl nickel complexes
- 5. Ritter's radical fluorination of aryl potassium trifluoroborates

Silver Mediated Aryl–F Bond Formation

Silver (II) as a site for C–F bond formation

Silver Mediated Aryl–F Bond Formation

Silver (II) as a site for C–F bond formation

Silver Mediated Aryl–F Bond Formation

Silver (II) as a site for C–F bond formation

Hartwig – 2013

Transition Metals Mediated Fluorination of Arenes and Heteroarenes

1. Palladium Catalyzed Processes

- The challenges facing transition metal catalyzed fluorination
- •First example of C–F bond formation by reductive elimination
- •Buchwalds catalytic fluorination using nucleophilic fluoride

2. Copper Catalyzed and Mediated Processes

- •Copper mediated halogen exchange
- Sanford's catalytic fluorination of aryl iodoniums
- •Sanford's Chan-Evans-Lam

3. Silver Catalyzed and Mediated Processes

- •Oxidative fluorination of aryl nucleophiles
- •Hartwig's Chichibabin inspired fluorination of heteroarenes

4. Ritter's oxidative fluorination of aryl nickel complexes

5. Ritter's radical fluorination of aryl potassium trifluoroborates

Nickel will actually undergo oxidative addition into simple unactivated Ar-F bonds - 1973

C–X bond formation fron Nickel (II) is unknown.

Oxidative Fluorination of Nickel Aryl Complexes

Oxidation state of intermediate is unknown

Oxidative Fluorination of Nickel Aryl Complexes

18F–L-DOPA 15% RCY

Oxidative Fluorination of Nickel Aryl Complexes

Oxidative Fluorination of Nickel Aryl Complexes

Camasso, N. M.; Sanford, M. S. Science, 2015, 347, 6227.

Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc., 2012, 134, 17456.

Transition Metals Mediated Fluorination of Arenes and Heteroarenes

1. Palladium Catalyzed Processes

- The challenges facing transition metal catalyzed fluorination
- •First example of C–F bond formation by reductive elimination
- •Buchwalds catalytic fluorination using nucleophilic fluoride

2. Copper Catalyzed and Mediated Processes

- •Copper mediated halogen exchange
- Sanford's catalytic fluorination of aryl iodoniums
- •Sanford's Chan-Evans-Lam

3. Silver Catalyzed and Mediated Processes

- •Oxidative fluorination of aryl nucleophiles
- •Hartwig's Chichibabin inspired fluorination of heteroarenes
- 4. Ritter's oxidative fluorination of aryl nickel complexes
- 5. Ritter's radical fluorination of aryl potassium trifluoroborates

Ritters Catalytic Palladium Chemistry – Unexpected Mechanism: no reductive elimination at the metal

Logical Catalytic Proposal

Stoichiometric Studies Suggest an Alternate Mechanism

Ritters Catalytic Palladium Chemistry – Unexpected Mechanism: no reductive elimination at the metal

Transition Metals Mediated Fluorination of Arenes and Heteroarenes

1. Palladium Catalyzed Processes

- The challenges facing transition metal catalyzed fluorination
- •First example of C–F bond formation by reductive elimination
- •Buchwalds catalytic fluorination using nucleophilic fluoride

2. Copper Catalyzed and Mediated Processes

- •Copper mediated halogen exchange
- •Sanford's catalytic fluorination of aryl iodoniums
- •Sanford's Chan-Evans-Lam

3. Silver Catalyzed and Mediated Processes

- •Oxidative fluorination of aryl nucleophiles
- •Hartwig's Chichibabin inspired fluorination of heteroarenes
- 4. Ritter's oxidative fluorination of aryl nickel complexes
- 5. Ritter's radical fluorination of aryl potassium trifluoroborates

Conclusions

Reductive elimination to from the C–F bond is kinetically difficult

High oxidation state metal center Pd(IV), Ag(II), Ni(III) – Facilitates problematic step Limited to organometallic nucleophiles and molecules with directing groups

Pd(II) catalysis allows the use of more diverse aryl halide electrophiles Ligand design incredibly important to get high efficiency

Cu(I)/Cu(III) catalysis – Cu prone to disproportionation Highly reactive electrophiles enable catalysis but shortening reaction times

Sanford – 2013 First Method Catalytic in Copper

Concentration of fluoride is kept low due to insolubility of KF in DMF

Transition State for Oxidative Addition

 ΔG^{\ddagger} 9.7 kcalmol⁻¹

10.9 kcalmol⁻¹

13.1 kcalmol⁻¹

9.4 kcalmol⁻¹

Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Org. Lett.* **2013**, *15*, 5134. Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Organometallics* **2014**, *33*, 5525. Grushin, V. V.; Demkina, I. I.; Tolstaya, T. P. *J. Chem. Soc., Perkin Trans.* **21992**, 505.

Barrier to oxidative addition to the I–Mes bond is ~ 4 kcal mol⁻¹ higher in energy

Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Org. Lett.* **2013**, *15*, 5134. Ichiishi, N.; Canty, A. J.; Yates, B. F.; Sanford, M. S. *Organometallics* **2014**, *33*, 5525.