Recent Developments in Nucleophilic Fluorination

Vlad Bacauanu

MacMillan Research Group

Group Meeting

March 13th, 2018

Importance of Novel Fluorination Technologies

clofarabine

HO

Fustero, S.; Soloshonok, V. A.; Liu, H. *et al. Chem. Rev.* **2014**, *114*, 2432. Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. *et al. Chem. Rev.* **2016**, *116*, 422.

Importance of Developing Nucleophilic Fluorination Strategies

Why would you choose to do nucleophilic fluorination?

- Generally cheaper reagents vs. electrophilic
- Potentially better FG tolerance (F⁺ is oxidizing)
- Significantly more desirable for ¹⁸F PET imaging (¹⁸F⁺ reagents are inconveniently made from ¹⁸F₂)

Campbell, M. G.; Ritter, T. *Chem. Rev.* **2015**, *115*, 612. Liang, T.; Neumann, C. N.; Ritter, T. *Angew. Chem., Int. Ed.* **2013**, *52*, 8214.

Recent Developments in Nucleophilic Fluorination

Construction of Alkyl C–F Bonds

Nucleophilic substitution promoted by hydrogen bonding Deoxyfluorination of aliphatic alcohols Transition metal-catalyzed allylic fluorination Direct hydrofluorination of alkenes Metal-mediated aminofluorination of alkenes Asymmetric hydrofluorination of epoxides Manganese-catalyzed C–H fluorination – see YYL group meeting

Construction of Aromatic C–F Bonds

Metal-mediated fluorination of arenes – see JRT group meeting Nucleophilic aromatic substitution of (pseudo)halides Ritter's S_N Ar deoxyfluorination of phenols

Aliphatic Nucleophilic Substitution Reactions with Fluoride

Why is an S_N^2 reaction using a fluoride source not as straightforward as it looks?

F	<i>water / protic solvents</i> hydrogen bonding	<i>polar aprotic solvents</i> no hydrogen bonding	
solubility	good	counterion dependent	
nucleophilicity	poor (no S_N2)	good	
basicity	weak	strong (competitive E2)	

Lee, S.; Chi, D. Y. et al. Chem. Soc. Rev. 2016, 45, 4638.

Unexpected S_N2 Reactions with Fluoride in Alcohol Solvents

"controllable fluoride" diminished basicity decent nucleophilicity

enhanced leaving group ability

Scope of Hydrogen Bond-Promoted Nucleophilic Flourination

Lee, S.; Chi, D. Y. et al. J. Am. Chem. Soc. 2006, 128, 16394.

Application of Hydrogen Bond-Promoted Nucleophilic Flourination

Desired fluorinated producted obtained in 1% yield

PET imaging of dopamine transporters

Lee, S.; Chi, D. Y. et al. J. Am. Chem. Soc. 2006, 128, 16394.

Application of Hydrogen Bond-Promoted Nucleophilic Flourination

Lee, S.; Chi, D. Y. et al. J. Am. Chem. Soc. 2006, 128, 16394.

General Deoxyfluorination of Aliphatic Alcohols

Middleton, W. J. J. Org. Chem. **1975**, 40, 574.

Doyle, A. G. et al. J. Am. Chem. Soc. 2015, 137, 9571.

Couturier, M. et al. J. Org. Chem. 2010, 75, 3401.

Ritter, T. et al. J. Am. Chem. Soc. 2013, 135, 2470.

Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.

Selected Examples of Alcohol Deoxyfluorination

Nielsen, M. K.; Ugaz, C. R.; Li, W.; Doyle, A. G. *J. Am. Chem. Soc.* **2015**, *137*, 9571. Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. *J. Am. Chem. Soc.* **2013**, *135*, 2470.

Metal-Catalyzed Nucleophilic sp³ Fluorination via π -Allyl Chemistry

Application of established π -allyl chemistry towards nucleophilic fluorination

Potential control over regioselectivity by modulating nature of catalytic species

Opportunities for asymmetric construction of fluorinated products

π -Allyl Methodologies for Nucleophilic sp³ Fluorination

Doyle's Palladium-Catalyzed Asymmetric Allylic Fluorination

Katcher, M. H.; Doyle, A. G. *J. Am. Chem. Soc.* **2010**, *132*, 17402. Katcher, M. H.; Sha, A.; Doyle, A. G. *J. Am. Chem. Soc.* **2011**, *133*, 15902.

Doyle's Palladium-Catalyzed Asymmetric Allylic Fluorination

Doyle's Palladium-Catalyzed Asymmetric Allylic Fluorination

Typical π -allyl mechanism involving "naked" F⁻ as nucleophile unlikely

Katcher, M. H.; Norrby, P. O.; Doyle, A. G. Organometallics 2014, 33, 2121.

Palladium-Catalyzed Allylic C–H Fluorination

Braun, M. G.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 12990.

Palladium-Catalyzed Allylic C–H Fluorination

F ⁻ source	co-catalyst	yield
AgF		0%
KF	—	0%
Et ₃ N•3HF		33%
Et ₃ N•3HF	(salen)MnCl	14%
Et ₃ N•3HF	(salen)CrCl	51%
Et ₃ N•3HF	(salen)CrF	28%

Braun, M. G.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 12990.

Palladium-Catalyzed Allylic C–H Fluorination

Braun, M. G.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 12990.

Recent Advances in Direct Hydrofluorination of Alkenes

Lu, Z.; Zeng, X.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2017, 139, 18202.

Direct Hydrofluorination of Alkenes Using a KHSO₄–HF Complex

solvent	HF complex	time	alkene SM	product
DCM	Py•3HF	0.5 h	100%	0%
DCM	K ₂ SO ₄ •14HF	18 h	84%	16%
DCM	KHSO ₄ •13HF	0.5 h	57%	43%
DCE	KHSO ₄ •13HF	0.5 h	29%	71%
DCE	KHSO ₄ •13HF	2 h	3%	83%
DCE	KH ₂ PO ₄ •9HF	0.5 h	100%	0%

Lu, Z.; Zeng, X.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2017, 139, 18202.

Direct Hydrofluorination of Alkenes Using a KHSO₄–HF Complex

Lu, Z.; Zeng, X.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2017, 139, 18202.

Palladium-Catalyzed Aminofluorination of Alkenes

Wu, T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.

Mechanism for Palladium-Catalyzed Aminofluorination of Alkenes

Other Examples of Metal-Catalyzed Alkene Aminofluorination

Zhu, H.; Liu, G. *Acta. Chim. Sinica* **2012**, *70*, 2404. Fu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. *Org. Lett.* **2014**, *16*, 2912. Chen, P.; Liu, G. *Eur. J. Org. Chem.* **2015**, 4295.

Mechanistic Insight for Iron-Catalyzed Aminofluorination of Alkenes

Fu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912.

Opportunities for Asymmetric Hydrofluorination of Epoxides

100 mol% (salen)CrClDMF, 60 °C, 80 h $55\% ee \qquad \text{(salen)CrCl}$

Bruns, S.; Haufe, G. *J. Fluor. Chem.* **2000**, *104*, 247. Hollingworth, C.; Gouverneur, V. *Chem. Commun.* **2012**, *48*, 2929.

Doyle's Lewis Acid-Catalyzed Asymmetric Hydrofluorination of Epoxides

Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268.

non-linear effects with (salen)Co (2) consistent with bimetallic rds

buildup of negative charge on substrate consistent with epoxide opening in rds

Discrepancy: kinetic studies show first order in (salen)Co catalyst!

rate ehhancement relative to monomer

absence of non-linear effects

consistent with bimetallic mechanism

Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2011, 133, 16001.

Bimetallic rate-determining step + dimeric resting state = first order kinetics

Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2011, 133, 16001.

Aliphatic C–H Nucleophilic Fluorination with Manganese Complexes

Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. *Science* **2012**, *337*, 1322. Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.; Groves, J. T. *J. Am. Chem. Soc.* **2014**, *136*, 6842.

Aliphatic C–H Nucleophilic Fluorination with Manganese Complexes

For more details, see Yong's group meeting on manganese catalysis

Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A.; Groves, J. T. *Science* **2012**, *337*, 1322. Huang, X.; Liu, W.; Ren, H.; Neelamegam, R.; Hooker, J. M.; Groves, J. T. *J. Am. Chem. Soc.* **2014**, *136*, 6842.

Recent Developments in Nucleophilic Fluorination

Construction of Alkyl C–F Bonds

Nucleophilic substitution promoted by hydrogen bonding
Deoxyfluorination of aliphatic alcohols
Transition metal-catalyzed allylic fluorination
Direct hydrofluorination of alkenes
Metal-mediated aminofluorination of alkenes
Asymmetric hydrofluorination of epoxides
Manganese-catalyzed C–H fluorination – see YYL group meeting

Construction of Aromatic C–F Bonds

Metal-mediated fluorination of arenes – see JRT group meeting Nucleophilic aromatic substitution of (pseudo)halides Ritter's S_N Ar deoxyfluorination of phenols

Transition Metal-Mediated Nucleophilic Flourination of Arenes

Transition Metal-Mediated Nucleophilic Flourination of Arenes

E

Transition Metal Mediated Fluorination of Arenes Jack Twilton \rightarrow

Nucleophilic Aromatic Substitution of Haloarenes with "Naked" Fluoride

requires high temperatures

Hoffmann elimination when drying

easy preparation and drying

Schimler, S. D.; Ryan. S. J.; Bland, D. C.; Anderson, J. E.; Sanford, M. S. J. Org. Chem. 2015, 80, 12137.

Schimler, S. D.; Ryan. S. J.; Bland, D. C.; Anderson, J. E.; Sanford, M. S. J. Org. Chem. 2015, 80, 12137.

Ritter's Deoxyfluorination of Phenols

- Adaptable towards fluorination with nucleophilic ¹⁸F
- Compatible with wide range of electronically distinct arenes
 - Unique S_N Ar approach for deoxyfluorination of phenols

Tang, P.; Wang, W.; Ritter, T. *J. Am. Chem. Soc.* **2011**, *133*, 11482. Neumann, C. N.; Hooker, J. M.; Ritter, T. *Nature* **2016**, *534*, 369.

A Concerted Nucleophilic Aromatic Substitution Approach

LG

NC

Concerted S_NAr

Nu LG

Underexplored concerted pathway

Good tolerance of arene electronics

MeO

LG

Nu

_G

Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534, 369.

A Concerted Nucleophilic Aromatic Substitution Approach

 $(\rho = 1.8 \text{ vs } \rho = 3-8 \text{ for step-wise } S_NAr)$

Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534, 369.

A Concerted Nucleophilic Aromatic Substitution Approach

Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534, 369.

Substrate Scope for Ritter's Deoxyfluorination of Phenols

Tang, P.; Wang, W.; Ritter, T. J. Am. Chem. Soc. 2011, 133, 11482.

Adaption of Deoxyfluorination For ¹⁸F Labelling

Neumann, C. N.; Hooker, J. M.; Ritter, T. Nature 2016, 534, 369.

Problems with ¹⁸F Labelling of More Electron-Rich Substrates

Scope of Improved ¹⁸F Labelling of Phenols

Hooker, J. M.; Ritter, T. et al. ACS Cent. Sci. 2017, 3, 944.

Recent Developments in Nucleophilic Fluorination

Construction of Alkyl C–F Bonds

Nucleophilic substitution promoted by hydrogen bonding Deoxyfluorination of aliphatic alcohols Transition metal-catalyzed allylic fluorination Direct hydrofluorination of alkenes Metal-mediated aminofluorination of alkenes Asymmetric hydrofluorination of epoxides Manganese-catalyzed C–H fluorination

Construction of Aromatic C–F Bonds

Metal-mediated fluorination of arenes Nucleophilic aromatic substitution of (pseudo)halides Ritter's S_NAr deoxyfluorination of phenols

