Targeting Cell Cycle Proteins for Cancer Therapeutics

Group Meeting

November 3, 2021

Cancer

Family of diseases arising from uncontrolled division of abnormal cells

- Second leading cause of death globally (1 in 6)
- 90 million newly reported cases annually
- Global economic burden exceeds \$2 trillion USD

surgery

radiotherapy

chemotherapy

targeted therapies selectively kill certain types of cancer cells in patients with relevant biomarkers

Sudhakar, A. J. Cancer Sci. Ther. 2009, 1, 1.

Outline

- Part I: Introduction to the Cell Cycle and Basic Concepts
- Part II: Biochemical Regulation of Cell Cycle Progression
- Part III: Strategies for Therapeutic Intervention

Overview of the Cell Cycle

DNA is Packaged into Chromosomes and Chromatin

Pollard, T. D.; Earnshaw, W. C.; Lippincott-Schwartz, J. Johnson, G. T. Cell Biology, 3rd ed.; Elsevier: Philadelphia, 2017.

Kinases and Phosphatases Control Signaling via Phosphorylation State

inhibitory S113 phosphorylation of isocitrate dehydrogenase

kinases can be inhibited or activated themselves by phosphorylation

Cyclin-Dependent Kinases (CDKs) Drive Cell-Cycle Transitions

Pollard, T. D.; Earnshaw, W. C.; Lippincott-Schwartz, J. Johnson, G. T. Cell Biology, 3rd ed.; Elsevier: Philadelphia, 2017.

Ubiquitylation Targets Proteins to the 26S Proteasome for Destruction

Activation of ubiquitin by E1

E1-enzyme conjugates C-terminal carboxyl of ubiquitin onto itself

Transfer to E2

Activated ubiquitin is transferred to E2 carrier enzyme at cysteine

Ubiquitylation of Target

E3 ligases facilitate transfer either directly or via E3 intermediate

Poly-ubiquitylation

Poly-ubiquitin chain recognized by proteasome receptor machinery

Other outcomes: directs protein sorting, protein protein interactions, removal by deubiquitinases

E3 Ligases APC/C and SCF Control Protein Degradation in the Cell Cycle

Anaphase-promoting complex/cyclosome

Co-activators target complex to specific degrons

Skp/cullin/F-box complex is active during S/G₂ Specificity controlled by 78 **F-box proteins**

Pollard, T. D.; Earnshaw, W. C.; Lippincott-Schwartz, J. Johnson, G. T. Cell Biology, 3rd ed.; Elsevier: Philadelphia, 2017.

DNA Surveillance Mechanisms Operate Throughout Interphase

DNA damage and DNA replication stress checkpoints control cell cycle progression and DNA repair

G₁ Phase and Regulation of Cell Proliferation

Pollard, T. D.; Earnshaw, W. C.; Lippincott-Schwartz, J. Johnson, G. T. Cell Biology, 3rd ed.; Elsevier: Philadelphia, 2017.

3. Cyclin D–Cdk4/6

access

Restriction Point Function and Cancer

*p53 Regulation of the G*₁/*S Checkpoint for DNA Damage*

healthy cell irradiation oncogenic stress p19^{Arf} Ę2F Mdm2 damage p19Arf Nucleolus/ Mdm2 ATM p53^{-P} p53 Mdm2 activated activated cannot p53-Mdm2 bind p53 p53 p53-Mdm2 ATM phosphorylates and E2F (from activated oncogene, e.g. p53-Mdm2 K-Ras) transcribes p19 activates p53 053 + Mdm2p53 levels low Mdm2 binding is blocked p19 sequesters Mdm2 in nucleolus throughout cell p53 tumor suppressor Mdm2 oncogene **p19** tumor supressor mutated/deleted in amplified/mutated in mutated/deleted in up to ~50% of human cancers 57% of sarcomas 70% of human cancers

S Phase and DNA Replication

Pollard, T. D.; Earnshaw, W. C.; Lippincott-Schwartz, J. Johnson, G. T. Cell Biology, 3rd ed.; Elsevier: Philadelphia, 2017.

S Phase and DNA Replication

DNA Replication Stress Checkpoint

G₂/Mitosis Transition Promoted by Cdk1 Feedback

molecular "switch" flipped by Polo kinase

positive feedback active Cdk1 phosphorylates and *activates* its own activator phosphatase Cdc25

inhibition of inhibition

active Cdk1 phosphorylates and *inactivates* its own inhibitory kinases **Wee1** and **Myt1**

microtubule stability drops centrosomes migrate apart chromosomes condense kinetochore assembly starts

G₂ DNA Damage Checkpoint

common DNA repair pathways in vertebrates

base excision repair nucleotide excision repair mismatch repair double-stranded break repair (NHEJ or HR)

Interphase

chromosomes duplicate cell grows in size

Prophase

chromosomes condense asters form around centrosomes cell rounds up

Prometaphase

nuclear envelope breaks down kinetochores capture microtubules

Metaphase

chromosomes align at spindle equator

Anaphase A

securin is degraded sister chromatids move toward poles

Anaphase B

central spindle (CS) assembles poles separate

cleavage furrow (CF) assembles

Telophase

cleavage furrow (CF) constricts nuclear envelope (NE) reassembles

Cytokinesis

chromosomes decondense microtubule cytoskeleton reassembles daughter cells separate

Chromosomal Passenger Complex (CPC) Corrects Kinetochore Attachment Errors

What happens if spindle microtubules capture kinetochores incorrectly?

Aurora B phosphorylates kinetochore components, promoting dissociation

Spindle Assembly Checkpoint (SAC) Monitors Kinetochore Attachment

- 1. Aurora B kinase signaling (not shown) recruits Mad1/2 to the unattached kinetochore
- 2. The **mitotic checkpoint complex** (MCC) assembles, inhibiting the **APC/C** (E3 ubiqitin ligase)
- 3. Kinetochore attachment frees APC/C to target substrates for onset of anaphase (cyclin B, securin)

Targeting Cell Cycle Proteins for Cancer Therapeutics

E2F/DP

activity should induce cytostatic G₀/G₁ arrest

Cdk4/6 Inhibitors Force Cell Cycle Exit

Pyrido[2,3-*d*]pyrimidin-7-one scaffold provided highly selective inhibition for Cdk4/6 over other Cdks

assay via [γ- ³² P]ATP incorporation	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$\begin{array}{c} & \overbrace{PD-0332991} (palbociclib) \end{array}$	
Cdk4–cyclin D IC ₅₀ (μM)	0.145	0.011	
Cdk2–cyclin A IC ₅₀ (μM)	5.010	5.010	

Cdk4/6 Inhibitors Force Cell Cycle Exit

In vivo studies with human tumor xenografts showed promising tumor regression and confirmed MoA

inhibition of Rb phosphorylation at Cdk4-specific sites antiproliferative activity arrests human breast carcinoma cells in G₁

Fry, D. W. et al. *Mol. Cancer Ther.* **2004**, *3*, 1427.

Cdk4/6 Inhibitors Force Cell Cycle Exit

In vivo studies with human tumor xenografts showed promising tumor regression and confirmed MoA

human breast carcinoma human colon carcinoma Mean Tumor Burden (mg) ± SE 1000 Mean Tumor Burden (mg) ± SE 00 00 P = 0.049 Colo-205 MDA-MB-435 004 P < 0.001 < 0.001 100 Limit of Palpation Limit of Palpation 20 30 50 40 80 90 10 20 30 50 60 Days Post-Tumor Implant Days Post-Tumor Implant

approved in February 2015 for ER+ Her2- advanced breast

cancer in combination with letrozole (aromatase inhibitor)

Fry, D. W. et al. Mol. Cancer Ther. 2004, 3, 1427.

Wee1 Inhibitors Force Cell Cycle Progression

Wee1 restricts G₂/M transition by phosphorylating Cdk1 (Cdc2) at Y15

Zhu, J.-Y. et al. J. Med. Chem. 2017, 60, 7863.

Strategy targets regulation of the G₂/M transition, forcing premature cell cycle progression

Wee1 Inhibitors Force Cell Cycle Progression

Linden, A. A. V.; Baturin, D.; Ford, J. B.; Fosmire, S. P.; Gardner, L.; Korch, C.; Reigan, P.; Porter, C. C. Mol. Cancer Ther. 2013, 12, 2675.

Wee1 Inhibitors Force Cell Cycle Progression

Wee1 inhibition permits sensitization to co-dosed genotoxics by suppressing DNA damage response

MK-1775 was licensed to AstraZeneca (AZD-1775, adavosertib) in 2013, with

~60 phase I/II clinical trials currently ongoing for various cancer types

Hirai, H. et al. Cancer Bio. Ther. 2010, 9, 514.

Chk1 Inhibitors Impair Oncogenic Replication Stress Tolerance

ATR and **Chk1** are two promising targets associated with oncogene-induced DNA replication stress

Actively dividing cancer cells experience higher levels of **replication stress** (ssDNA) and are more susceptible to **replication catastrophe**

Chk1 Inhibitors Impair Oncogenic Replication Stress Tolerance

Chk1 inhibition by LY2606368 causes accumulation of DNA damage and replication catastrophe

King, C.; Diaz, H. B.; McNeely, S.; Barnard, D.; Dempsey, J.; Blosser, W.; Beckmann, R.; Barda, D.; Marshall, M. S. Mol. Cancer Ther. 2015, 14, 2004.

Chk1 Inhibitors Impair Oncogenic Replication Stress Tolerance

Prexasertib induces DNA damage in tumors and inhibits lung carcinoma in xenograft model

Activity in PARP-inhibitor resistant ovarian cancer

poly(ADP-ribose) polymerase critical for genome stability

King, C.; Diaz, H. B.; McNeely, S.; Barnard, D.; Dempsey, J.; Blosser, W.; Beckmann, R.; Barda, D.; Marshall, M. S. *Mol. Cancer Ther.* **2015**, *14*, 2004. Parmar, K. et al. *Clin. Cancer Res.* **2019**, *25*, 6127.

Aurora B Inhibitors Interfere with Chromosomal Segregation

Inhibitors of the mitotic spindle and spindle assembly checkpoint induce chromosome mis-segregation

Syntelic (errors)

in vitro selectivity				
kinase	$\mathrm{IC}_{50}, \mu\mathrm{M}^{a}$	kinase	$IC_{50}, \mu M^a$	
Aurora A	1.4	KDR	1.8	
Aurora B-INCENP	< 0.001	PHK	1.8	
Aurora C-INCENP	0.017	ZAP70	8.2	
LCK	0.17	others ^b	>10	

Mortlock, A. A. et al. J. Med. Chem. 2007, 50, 2213.

Aurora B Inhibitors Interfere with Chromosomal Segregation

Aurora B inhibitor barasertib induces polyploidy and inhibits cancer growth in xenograft models

Helfrich, B. A.; Kim, J.; Gao, D.; Chan, D. C.; Zhang, Z.; Tan, A.-C.; Bunn, P. A. *Mol. Cancer Ther.* **2015**, *15*, 2314. Wilkinson, R. W. et al. *Clin. Cancer Res.* **2007**, *13*, 3682.

Aurora B Inhibitors Interfere with Chromosomal Segregation

Ongoing trials in phase I/II for hematological cancers, small-cell lung cancer, and prostate cancer

Ashton, S. et al. *Sci. Transl. Med.* **2016**, *8*, 325ra17. Floc'h, N. et al. *Mol. Cancer Ther.* **2019**, *18*, 909.