Recent Advances in Cross-Coupling by Manganese Catalysis

Xiaheng Zhang MacMillan Group Meeting February 27th, 2018

Manganese is the third most abundant transition metal in the Earth's crust

Why do people care about Manganese Catalysis

superoxide dismutase (Mn-SOD) antioxidant enzyme catalyzes the dismutation of the superoxide (O₂⁻) radical VII B groupelectron configuration: $3d^54s^2$ range of oxidation state:-3 to +7

arginase enzyme in the urea cycle converts *L*-arginine into *L*-ornithine and urea

Benefits of Manganese Catalysis

naturally abundant in the earth's crust

■ low cost and low toxicity relative to other transition metals

present in various metalloproteins

essential element for all species (human daily intake ~ 4 mg)

Can we discover new reactivity that is unique to manganese catalysis?

Recent Advances in Cross-Coupling by Manganese Catalysis

Recent Advances in Cross-Coupling by Manganese Catalysis

Manganese Catalyzed Cross Coupling

Cahiez, G.; Bernard, D.; Normant, J. F. J. Organomet. Chem. 1976, 113, 99.

Manganese Catalyzed Homocoupling

Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788.

Cahiez proposed an Mn (II)/(IV) mechanistic cycle

Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788.

Manganese Catalyzed Homocoupling

Cahiez, G.; Moyeux, A.; Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788.

Manganese Catalyzed Cross-coupling

Salts	Yield	thiophene-dimer
NaCl	88%	trace
KCl	86%	trace
KF	20%	50%
LiCl	10%	35%

inorganic salt is essential due to the suppression of the homocoupling by-product

Kang, S.-K.; Kim, J.-S.; Choi, S.-C. J. Org. Chem. 1997, 62, 4208.

Manganese Catalyzed Cross-coupling

Kang, S.-K.; Kim, J.-S.; Choi, S.-C. J. Org. Chem. 1997, 62, 4208.

Alami, M.; Ramiandrasoa, P.; Cahiez, G. Synlett 1998, 325.

Comparison between Mn-, Ni- and Pd-catalysis

Catalyst	Yield	
PdCl ₂ (PPh ₃) ₂ PdCl ₂ (dppf) NiCl ₂ (PPh ₃) ₂ MnCl ₂ •2LiCl	27% 38% 35% 84%	β elimination

Alami, M.; Ramiandrasoa, P.; Cahiez, G. Synlett 1998, 325.

Cahiez, G.; Lepifre, F.; Ramiandrasoa, P. Synthesis 1999, 2138.

Cahiez, G.; Lepifre, F.; Ramiandrasoa, P. Synthesis 1999, 2138.

Manganese Catalyzed Cross-coupling

Smejkal, T. et al. Org. Process Res. Dev. 2017, 21, 1625.

Manganese Catalyzed Cross-coupling

reagent	\cos^a (scale)	
methylboronic acid	\$1820/mol (5 g)	
trimethylboroxine	\$954/mol (250 g)	
potassium methyltrifluoroborate	\$4475/mol (5 g)	
trimethylaluminum (neat)	\$168/mol (100 g)	
trimethylaluminum (2 M in toluene)	\$86/mol (18 L)	
dimethylzinc (2 M in toluene)	\$2225/mol (500 mL)	
methylmagnesium bromide (3 M in diethyl ether)	\$29/mol (18 L)	

^aCost \$/mol and the largest scale available in Aldrich catalogue

Smejkal, T. et al. Org. Process Res. Dev. 2017, 21, 1625.

Development of Manganese Catalyzed Cross-coupling

Cahiez, G.; Gager, O.; Lecomte, F. Org. Lett. 2008, 10, 5255.

Madsen, R. et al. Eur. J. Org. Chem. 2017, 5269.

Manganese Catalyzed Cross-coupling

Typical characteristic of manganese catalysis comparing to other organometallic catalysis

■ Reaction doesn't need ligand to facilitate the elimination step.

- Most of the coupling reactions share very similar condition. (MnCl₂ and THF solvent)
- Reaction is very fast (10 min \sim 1 h) compared to other transition metals.
- Not sensitive to the steric hindrance.

Nakao, J.; Inoue, R.; Shinokubo, H.; Oshima, K. J. Org. Chem. **1997**, 62, 1910. Oshima, K. J. Organomet. Chem. **1999**, 575, 1.

Mechanism Insight of Manganese Catalysis

Nakao, J.; Inoue, R.; Shinokubo, H.; Oshima, K. J. Org. Chem. **1997**, 62, 1910. Oshima, K. J. Organomet. Chem. **1999**, 575, 1.

Manganese Catalyzed Cross-coupling

Proposed mechanism for manganese Catalyzed cross-coupling

cyclization suggests intermediacy of radicals

Madsen, R. et al. Eur. J. Org. Chem. 2017, 5269.

Proposed mechanism for manganese Catalyzed cross-coupling

Manganese Catalyzed Cross-coupling

Falck, J. R. *et al. J. Am. Chem. Soc.*, **2007**, *129*, 790. Dakarapu, R. Falck, J. R. *J. Org. Chem.*, **2018**, *83*, 1241.

Manganese Catalyzed Cross-coupling

Proposed mechanism for Mn/Cu-cocatalyzed cross-coupling

Brief summary of manganese catalyzed C-C bond formation

Recent Advances in Cross-Coupling by Manganese Catalysis

Y.-C. Teo, F.-F. Yong, C.-Y. Poh, Y.-K. Yan, G.-L. Chua, Chem. Commun. 2009, 6258.

Y.-C. Teo et al. Eur. J. Org. Chem. 2013, 515.

F.-F. Yong, Y.-C. Teo, *Tetrahedron Lett.* **2010**, *51*, 3910.

limited substrate scope

Chen, H.; Hartwig, J. F. Angew. Chem. Int. Ed. 1999, 38, 3391;

Proposed mechanism for the photochemical promoted C-H borylation

Chen, H.; Hartwig, J. F. Angew. Chem. Int. Ed. 1999, 38, 3391;

Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 6139.

entry	Mn/TMEDA %	time	yield ^a
1^b	0.1%	24 h	80%
2	1%	4 h	88%
3	5%	0.5 h	78%

Atack, T. C.; Cook, S. P. J. Am. Chem. Soc. 2016, 138, 6139.

Mechanism studies for the reaction

Mechanism studies for the reaction

Results suggest alkyl radicals are involved from the alkyl halides

- Reducing the temperature to 0 °C produced direct borylation product as the sole product, suggesting the rate of radical recombination with Mn is faster than that of 5-exo ring closure.
- The first report on the use of temperarture to effect a switch in selectivity in radical-based transiton metal chemistry.

Mechanism studies for the reaction

supporting the intermediacy of alkyl radicals formation is involved in the turnover-limiting step

Recent Advances in Cross-Coupling by Manganese Catalysis

the development of Mn catalyzed C–H activation protocols remained nearly dormant in the following 40 years...

Bruce, M. I.; Iqbal, M. Z.; Stone, F. G. A. J. Chem. Soc. A 1970, 3204.

Bruce, M. I.; Iqbal, M. Z.; Stone, F. G. A. J. Chem. Soc. A 1970, 3204.

Kuninobu, Y.; Nishina, T.; Takeuchi, T.; Takai, K. Angew. Chem. Int. Ed. 2007, 46, 6518.

Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.

Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.

Proposed mechanism for Mn catalyzed C-H alkenylation

Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.

C-H activation coupling with alkyne derivatives by using Mn/base systems

selected examples

Angew. Chem., Int. Ed. 2017, 56, 6660

Adv. Synth. Catal. 2016, 358, 2436.

C-H activation coupling with olefins by using Mn/base systems

Kuninobu, Y.; Nishina, T.; Takeuchi, T.; Takai, K. Angew. Chem. Int. Ed. 2007, 46, 6518.

Zhou, B.; Hu, Y.; Wang, C. Angew. Chem. Int. Ed. 2015, 54, 13659.

Zhou, B.; Hu, Y.; Wang, C. Angew. Chem. Int. Ed. 2015, 54, 13659.

Proposed mechanism for Mn catalyzed C-H addition to nitriles/aldehyde

selected exapmles

Sueki, S.; Wang, Z.; Kuninobu, Y. Org. Lett. 2016, 18, 304.

Zhou, B.; Hu, Y.; Liu, T.; Wang, C. Nat. Commun. 2017, 8, 1169.

What about combining with more challenging alkyl halides for the sp²-sp³ cross-coupling?

Liu, W.; Cera, G.; Oliveira, J. C. A.; Shen, Z.; Ackermann, L. Chem. - Eur. J. 2017, 23, 11524.

Radical Clock experiment

Proposed mechanism for Mn catalyzed C-H methylation

Fadeyi, O. O. et al. Angew. Chem. Int. Ed. 2017, 56, 15309.

Proposed mechanism

Fadeyi, O. O. et al. Angew. Chem. Int. Ed. 2017, 56, 15309.

Fadeyi, O. O. et al. Angew. Chem. Int. Ed. 2017, 56, 15309.

Brief summary of manganese catalyzed C-H activation for C-C bond formation

obstacles remain:

- 1. Mn redox chemistry is still unclear, rare examples of redox-based catalysis by Mn;
- 2. no enantioselective C-H transformation;
- 3. unprecedented and unique catalic reactivity need to be explored, e.g. C-X bond formation

Summary

