Recent Developments of Cobalt-Catalyzed Hydrofunctionalization of Olefins

Yufan Liang MacMillan Group Meeting February 5th, 2020

Outline

Mukaiyama Hydration

Teruaki Mukaiyama et al., Chem. Lett. 1989, 449; 1989, 569; 1989, 573; 1989, 1071.

Quenching Alkyl Radicals with Radicalophiles: Summary of Carreira's Work

Quenching Alkyl Radicals with Radicalophiles: Selected Examples

Quenching Alkyl Radicals with Radicalophiles: Important Findings

For a full article (including a SAR study of the ligands): Waser, J.; Gasper, B.; Nambu, H.; Carreira, E. M. *J. Am. Chem. Soc.* **2006**, *128*, 11693.

Quenching Alkyl Radicals with Radicalophiles: Hydroheteroarylation

Ma, X.; Herzon, S. B. *J. Am. Chem. Soc.* **2016**, *138*, 8718 Ma, X.; Dang, H.; Rose, J. A.; Rablen, P.; Herzon, S. B. *J. Am. Chem. Soc.* **2017**, *139*, 5998 (full article)

Quenching Alkyl Radicals with Radicalophiles: Hydroheteroarylation

Ma, X.; Herzon, S. B. *J. Am. Chem. Soc.* **2016**, *138*, 8718 Ma, X.; Dang, H.; Rose, J. A.; Rablen, P.; Herzon, S. B. *J. Am. Chem. Soc.* **2017**, *139*, 5998 (full article)

Quenching Alkyl Radicals with Radicalophiles: A Versatile Strategy

Ma, X.; Herzon, S. B. Beilstein J. Org. Chem. 2018, 14, 2259

Outline

Olefin Isomerization via Reversible HAT

Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788

Olefin Isomerization via Reversible HAT

Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788

Diene Cycloisomerization via Reversible HAT

Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788

Terminal Olefin as Substrate: Temperature Effect

Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788

Terminal Olefin as Substrate: Temperature Effect

Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788

Proposed Mechanism: Off-Cycle Alkylcobalt Species

For 1,2-disubstituted olefin, formation of an alkylcobalt species with a tertiaryl alkyl is not favored.

Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. J. Am. Chem. Soc. 2014, 136, 16788

Olefin Hydroarylation via Dual Nickel and Cobalt Catalysis

Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 12779

Olefin Hydroarylation via Dual Nickel and Cobalt Catalysis

Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. J. Am. Chem. Soc. 2016, 138, 12779

Shevick, S. L.; Obradors, C.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 12056

Mechanistic Studies: Roles of the Oxidant

Reoxidizing Co^{II} to the active Co^{III} oxidation state

Shevick, S. L.; Obradors, C.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 12056

Mechanistic Studies: Cobalt to Nickel Alkyl Transfer

Shevick, S. L.; Obradors, C.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 12056

Mechanistic Studies: Cobalt to Nickel Alkyl Transfer

Shevick, S. L.; Obradors, C.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 12056

Mechanistic Studies: Cobalt to Nickel Alkyl Transfer

Shevick, S. L.; Obradors, C.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 12056

Mechanistic Studies: Cobalt(III) to Nickel(III) Alkyl Transfer

Shevick, S. L.; Obradors, C.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 12056

Cobalt(III) to Nickel Alkyl Transfer: Literature Precedents

Ram, M. S.; Riordan, C. G.; Yap, G. P. A.; Liable-Sands, L.; Rheingold, A. L.; Marchaj, A.; Norton, J. R. *J. Am.Chem. Soc.* **1997**, *119*, 1648

Cobalt(III) to Nickel Alkyl Transfer: Literature Precedents

Alternatively, Co(III) to Ni(I)-R alkyl transfer is also feasible

Komeyama, K.; Michiyuki, T.; Osaka, T. ACS Catalysis 2019, 9, 9285

Outline

Hydrofluorination of Olefin via Radical Fluorination

Hydrofluorination of Olefin via Radical Fluorination

Shigehisa, H.; Nishi, E.; Fujisawa, M.; Hiroya, K. Org. Lett. 2013, 15, 5158

Hydrofluorination of Olefin: An Happy Accident

Shigehisa, H. Chem. Pharm. Bull. 2018, 66, 339

Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306

Hydroalkoxylation of Olefin: Scope

Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306

Hydroalkoxylation of Olefin: Tertiary Alkyl C–O Formation

Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306

Hydroalkoxylation of Olefin: Alcohol not as Solvent

x equiv	y equiv	yield
1 equiv	2 equiv	79% yield
2 equiv	1 equiv	80% yield
1 equiv	1 equiv	67% yield

Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306

Hydroalkoxylation of Olefin: Proposed Mechanism

Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306

Hydroalkoxylation of Olefin: Mechanistic Studies

Dueterium labeling

Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306

Hydroalkoxylation of Olefin: Mechanistic Studies

Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. J. Am. Chem. Soc. 2013, 135, 10306

Intramolecular Hydroalkoxylation of Olefin with Protected Alcohol

PG	time (h)	yield
TBS	0.5	99%
МОМ	0.5	99%
MEM	0.5	97%
BOM	0.5	99%
Bn	1.5	93%
Ме	1.5	87%
Ac	6.5	27%

Shigehisa, H. et. al., J. Am. Chem. Soc. 2016, 138, 10597

Intramolecular Hydroalkoxylation of Olefin with Protected Alcohol

Shigehisa, H. et. al., J. Am. Chem. Soc. 2016, 138, 10597

Intramolecular Hydroalkoxylation of Olefin with Acid and Esters

PG	time (h)	yield
н	21	84%
Ме	0.5	99%
Et	1	99%
Bn	19	97%
РМВ	3	99%
<i>t</i> -Bu	19	93%

Shigehisa, H. et. al., J. Am. Chem. Soc. 2016, 138, 10597

Intramolecular Hydroalkoxylation of Olefin with Acid and Esters

Shigehisa, H. et. al., J. Am. Chem. Soc. 2016, 138, 10597

Intramolecular Hydroalkoxylation of Olefin with Acid and Esters

Shigehisa, H. et. al., J. Am. Chem. Soc. 2016, 138, 10597

Intramolecular Hydroamination of Olefin

Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.; Hiroya, K. J. Am. Chem. Soc. 2014, 136, 13534

Intramolecular Hydroamination of Olefin: Oxygen v.s. Nitrogen

PG	C–N product	C–O product
н	0%	67%
МОМ	24%	54%
TBS	43%	50%
Ac	89%	0%

Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.; Hiroya, K. J. Am. Chem. Soc. 2014, 136, 13534

Other Applications: Arenes and Thioester as Nucleophiles

Shigehisa, H.; Ano, T.; Honma, H.; Ebisawa, K.; Hiroya, K. Org. Lett. **2016**, *18*, 3622 Date, S.; Hamasaki, K.; Sunagawa, K.; Koyama, H.; Sebe, C.; Hiroya, K.; Shigehisa, H. ACS Catal. **2020**, *10*, 2039

Alternative Pathway to Generate Carbocations: Alkylcobalt(IV)

Generation of Alkylcobalt(IV) and Reacting with Nucleophiles: Literature Precedents

Abley, P.; Dockal, E. R.; Halpern, J. *J. Am. Chem. Soc.* **1972**, *94*, 659 Halpern, J.; Chan, M. S.; Hanson, J.; Roche, T. S.; Topich, J. A. *J. Am. Chem. Soc.* **1975**, *97*, 1606

Generation of Alkylcobalt(IV) and Reacting with Nucleophiles: Literature Precedents

Anderson, S. N.; Ballard, D. H.; Chrzastowski, J. Z.; Dodd, D.; Johnson, M. D. *J. Chem. Soc. Chem. Commun.* **1972**, 685 Magnuson, R. H.; Halpern, J.; Levitin, I. Y.; Vol'pin, M. E. *J. Chem. Soc. Chem. Commun.* **1978**, 44

Divergent Pathways of Alkylcobalt(IV) Generated from Allylic Alcohols

The ligands can serve as a controlling factor for achieving divergent and selective transformations.

Touney, E. E.; Foy, N. J.; Pronin, S. V. J. Am. Chem. Soc. 2018, 140, 16982

Divergent Functionalization of Allylic Alcohols

Touney, E. E.; Foy, N. J.; Pronin, S. V. J. Am. Chem. Soc. 2018, 140, 16982

Divergent Functionalization of Allylic Alcohols

Touney, E. E.; Foy, N. J.; Pronin, S. V. J. Am. Chem. Soc. 2018, 140, 16982

Asymmetric Catalysis for sp³ C–O Formation using Chiral Salen Ligands

Co^{II} Catalyst D

Discolo, C. A.; Touney, E. E.; Pronin, S. V. *J. Am. Chem. Soc.* **2019**, *141*, 17527 Shigehisa, H. *et. al., Chemrxiv* doi: 10.26434/chemrxiv.9981395.v1 How to develope **intermolecular** $sp^3 C-O$ and $sp^3 C-N$ formation reactions?

<10% yield, under a variety of conditions using either oxidant 1 or 2

Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. *J. Am. Chem. Soc.* **2019**, *141*, 7250 Zhu, R. *Synlett* **2019**, *30*, 2015

Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. J. Am. Chem. Soc. 2019, 141, 7250

Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. J. Am. Chem. Soc. 2019, 141, 7250

Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. J. Am. Chem. Soc. 2019, 141, 7250

Optimization: Some Interesting Findings

Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. J. Am. Chem. Soc. 2019, 141, 7250

Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. J. Am. Chem. Soc. 2019, 141, 7250

Outline

arbocation

carbanion

Olefins as Carbanion Precursors

Matos, J. L. M.; Vásquez-Céspedes, S.; Gu, J.; Oguma, T.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 16976

Olefins as Carbanion Precursors

Matos, J. L. M.; Vásquez-Céspedes, S.; Gu, J.; Oguma, T.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 16976

stable species at r.t. in solution

Matos, J. L. M.; Vásquez-Céspedes, S.; Gu, J.; Oguma, T.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 16976

Olefins as Carbanion Precursors: Mechanistic Studies

Co^{III} to Cr^{II} transmetallation (alkyl transfer)
 Cr^{II} was generated through reduction using silane

Matos, J. L. M.; Vásquez-Céspedes, S.; Gu, J.; Oguma, T.; Shenvi, R. A. J. Am. Chem. Soc. 2018, 140, 16976

Summary

Reviews for further reading:

Shenvi, R. A. *et. al., Chem. Rev.* 2016, *116*, 8912
Shenvi, R. A. *et. al., Acc. Chem. Soc.* 2018, *51*, 2628
Shenvi, R. A. *et. al.,* Chapter 7. Markovnikov Functionalization by Hydrogen Atom Transfer *Organic Reactions*, 2019, *100*, 383
Shigehisa, H. *Chem. Pharm. Bull.* 2018, *66*, 339
Zhu, R. *Synlett* 2019, *30*, 2015

Michiyuki, T.; Komeyama, K. *Asian J. Org. Chem.* **2020**, *9*, 1 "Recent Advances in Four-Coordinated Planar Cobalt Catalysis in Organic Synthesis"