The Adaptive Immune System: Function, Vaccination, and Disease

Zane H. Boyer

MacMillan Research Group

Group Meeting

February 20, 2024

Destruction of pathogens and mutated cells

Destruction of pathogens and mutated cells

The immune system works to maintain homeostasis and destroy pathogens

Destruction of pathogens and mutated cells

Adaptive and innate immune cells

Adaptive and innate immune cells

Adaptive and innate immune cells

Immune cells work in tandem to generate tailored immune response

Adaptive Immune System

Enabling aspects and failures of adaptive immunity

Adaptive Immune System

Biological Development of T and B Cells

Biological Development of T and B Cells HPSC differentiation

Biological Development of T and B Cells HPSC differentiation

Various chemical signals induce initial differentiation of HPSCs

Biological Development of T and B Cells

Differentiation is determined by organ location of lymphoid precursors

Biological Development of T and B Cells

Differentiation is determined by organ location of lymphoid precursors

The thymus is a small gland that resides upon the heart

Most thymus activity occurs in early years of life

Germain, R. N. Nat. Rev. Immunol. 2002, 2, 309-322.

V(D)J recombination and positive selection

By Double Positive stage, T cells have complete TCRs

V(D)J recombination and positive selection

By Double Positive stage, T cells have complete TCRs

V(D)J recombination and positive selection

By Double Positive stage, T cells have complete TCRs

Variable components of both chains enable TCR specificity, diversity

Janeway, C. A., Travers, P., Walport, M., et al. New York: Garland Science. 2001. T-cell receptor gene rearrangement.

V(D)J recombination and positive selection

a Chain

V(D)J recombination and positive selection

α Chain

V(D)J recombination and positive selection

α Chain

Janeway, C. A., Travers, P., Walport, M., et al. New York: Garland Science. 2001. T-cell receptor gene rearrangement.

V(D)J recombination and positive selection

β Chain

Janeway, C. A., Travers, P., Walport, M., et al. New York: Garland Science. 2001. T-cell receptor gene rearrangement.

V(D)J recombination and positive selection

β Chain

V(D)J recombination and positive selection

TCR

Approximately 10¹⁵ αβ TCRs are possible from V(D)J recombination

T cells expressing various recombined TCRs are tested by thymus cells

T cells expressing TCRs that bind MHC proteins are stimulated and enabled to progress

Germain, R. N. Nat. Rev. Immunol. 2002, 2, 309-322.

Negative Selection of TCRs

Negative Selection of TCRs

Negative Selection of TCRs

Mature T Cells Exit the Thymus

Mature, naive T cells enter circulatory and lymphatic systems

Kurd, N., Robey, E. A. *Immunol. Rev.* **2016**, *271*(1), 114-126. Germain, R. N. *Nat. Rev. Immunol.* **2002**, *2*, 309-322.

Mature, naive T cells enter circulatory and lymphatic systems

Kurd, N., Robey, E. A. *Immunol. Rev.* **2016**, *271*(1), 114-126. Germain, R. N. *Nat. Rev. Immunol.* **2002**, *2*, 309-322.

Biological Development of T and B Cells

Differentiation is determined by organ location of lymphoid precursors

Biological Development of T and B Cells

Differentiation is determined by organ location of lymphoid precursors

Lai, A. Y., Kondo, M. *Semin. Immunol.* **2008**, *20*(4), 207-212. Rizzani, R., et al. *Int. J. Mol. Sci.* **2020**, *21*(22), 8806

Red bone marrow

Red bone marrow

Lai, A. Y., Kondo, M. *Semin. Immunol.* **2008**, *20*(4), 207-212. Rizzani, R., et al. *Int. J. Mol. Sci.* **2020**, *21*(22), 8806

Ig heavy chain is analogous to $\mathsf{TCR}\beta$

Lai, A. Y., Kondo, M. *Semin. Immunol.* **2008**, *20*(4), 207-212. Rizzani, R., et al. *Int. J. Mol. Sci.* **2020**, *21*(22), 8806

How Do B Cells and Antibodies Become so Specific?

Light chain

How Do B Cells and Antibodies Become so Specific?

Alberts, B., Johnson, A., Lewish, J., et al. Mol. Biol. of the Cell 4th Ed. 2002, Garland Science.

How Do B Cells and Antibodies Become so Specific?

Positive and Negative Selection of BCRs

In blood or lymph

Binding of foreign antigens triggers hypermutation

In bone marrow

Binding of self antigens can trigger hypermutation

Nemazze, D. Nat. Rev. Immunol. 2017, 17, 281-294.

Accumulated mutations in variable region

IgM as Dominant Isotype

IgM Pentamer (humoral) IgM Monomer (membrane bound)

Nemazze, D. Nat. Rev. Immunol. 2017, 17, 281-294.

IgM Pentamer (humoral) IgM Monomer (membrane bound) IgG Monomer (humoral and membrane bound)

Naturally lower affinity, less potent at promoting innate immunity Naturally higher affinity, more potent at promoting innate immunity

First exposure to antigen

Adaptive Immune System

Enabling aspects and failures of adaptive immunity

Adaptive Immune System

Enabling aspects and failures of adaptive immunity

Variolation was developed in Turkey Africa, China, Europe

Edward Jenner inoculates child with cowpox, demonstrates immunity to smallpox

Robert Koch identifies M. tuberculosis as cause of tuberculosis

Trivalent live oral polio vaccine, numerous measles vaccines developed

Smallpox is eradicated

First "cancer" vaccine approved by FDA

Vaccine preventable pathogens

Varicella, Influenza, Hepatitis A/B, HPV, Measles, Mumps, Rubella, Poliovirus, Rotavirus, RSV, Rabies, Smallpox, Yellow Fever, Dengue, Shingles Diphtheria, HiB, Meningococcal, Clostridium tetani, Bordetella pertussis, Mycobaterium tuberculosis

>20 Vaccine preventable viruses and bacteria

Vaccine preventable pathogens

2023 Recommended Immunizations for Children from Birth Through 6 Years Old

	Birth		2	4	6	12	15	18	19-23	2-3	4-6
VACCINE		MONTH	MONTHS	MONTHS	MONTHS	MONTHS	MONTHS	MONTHS	MONTHS	YEARS	YEARS
HepB Hepatitis B	НерВ НерВ			НерВ							
RV* Rotavirus			RV	RV	RV*						
DTaP Diphtheria, Pertussis, & Tetanus			DTaP	DTaP	DTaP		D	Тар			DTaP
Hib* Haemophilus Influenzae type b			Hib	НЬ	Hib*	н	lib				
PCV13, PCV15 meumococcal disease			PCV	PCV	PCV	P	cv				
PV			IPV	IPV			PV				IPV
COVID-19** Coronavirus disease 2019								COVID-19**			
Flu† nfluenza					Flu (One or Two Doses Yearly)†						
MMR Measles, Mumps, & Rubella						м	MR				MMR
/aricella hickenpox						Vari	cella				Varicella
						HepA*		Не	pA*		

Classes of vaccine

Traditional Vaccines

RNA Vaccines

Inactivated (killed) e.g. HepA, Flu, Polio

Live attenuated e.g. MMR, Rotavirus, Smallpox, Chickenpox

mRNA vaccine against SARS-CoV-2

Subunit/Toxoid HepB, HPV, Diphtheria, Tetanus, Meningococcal

Classes of vaccine

Traditional Vaccines

RNA Vaccines

Inactivated (killed) e.g. HepA, Flu, Polio

Live attenuated e.g. MMR, Rotavirus, Smallpox, Chickenpox

mRNA vaccine against SARS-CoV-2

Subunit/Toxoid HepB, HPV, Diphtheria, Tetanus, Meningococcal

Inactivated Vaccines

- Inactivated with heat or chemicals (ethylenimine, formaldehyde)
- Incredibly safe, cannot cause infection
- Stable, easily mass produced
- Primarily function through initial BCR activation
 - Weaker immune activation
- Requires numerous doses

Live Attenuated Vaccines

- In vitro viral passaging results in mutations depleting viral dangers
- Target macrophages and dendritic cells
- Potent, provide long lasting immunity
- Require refrigeration to remain stable
- Attenuated virus can regain pathogenicity, can rarely cause disease outbreaks

Subunit/Toxoid Vaccines

Viral or bacterial proteins or inactivated toxins promote immunity

Targets APCs and BCR

Often long lasting immunity, very safe

Require adjuvant to boost immune response

Requires optimization of adjuvant and subunit to promote proper immunity

Distinctions between vaccine types

Distinctions between vaccine types

Vaccination mechanism

Clonal expansion, somatic hypermutation, class switching

Vaccination mechanism

Classes of vaccine

Traditional Vaccines

RNA Vaccines

Inactivated (killed) e.g. HepA, Flu, Polio

Live attenuated e.g. MMR, Rotavirus, Smallpox, Chickenpox

mRNA vaccine against SARS-CoV-2

Subunit/Toxoid HepB, HPV, Diphtheria, Tetanus, Meningococcal

Classes of vaccine

Traditional Vaccines

RNA Vaccines

Inactivated (killed) e.g. HepA, Flu, Polio

Live attenuated e.g. MMR, Rotavirus, Smallpox, Chickenpox

Subunit/Toxoid HepB, HPV, Diphtheria, Tetanus, Meningococcal

mRNA vaccine against SARS-CoV-2

Vaccines: Frontline Protection from Viral and other Diseases mRNA vaccine function

The New York Times

New Pfizer Results: Coronavirus Vaccine Is Safe and 95% Effective

The company said it planned to apply for emergency approval from the Food and Drug Administration "within days."

mRNA vaccine function

mRNA vaccine function

Why are certain types of vaccines used instead of others?

Before widespread immunization, Polio caused 500,000 deaths or paralyzes per year

Only two countries with endemic poliovirus as of 2020

— Inactivated poliovirus vaccine (IPV) — — Oral Poliovirus Vaccines (OPVs) —

Contains inactivated version of all 3 polio strains

Promotes immunity in bloodstream, prevents disease but less effective at infection prevention

Cannot cause paralysis

Contains attenuated version of 1-3 polio strains

Promotes immunity in intestine, prevents paralysis and transmission

Attenuated virus mutates and causes paralysis, infectious disease in 1 out of 2.4 million cases.

Cases recorded 19 Aug 2019 - 18 Aug 2020

- Vaccine-derived polio cases
- Wild polio cases

(in addition to vaccine-derived polio cases)

— Oral Poliovirus Vaccines (OPVs) ——

Contains attenuated version of 1-3 polio strains

Promotes immunity in intestine, prevents paralysis and transmission

Attenuated virus mutates and causes paralysis, infectious disease in 1 out of 2.4 million cases.

Watson, C. *Nature.* **2023**, *620*, 706-707. *Polio Vaccine*. Children's Hospital of Philadelphia. **2024**. Gugliemli, G. *Nature*. **2020**.

Why is OPV used anywhere?

— Inactivated poliovirus vaccine (IPV) — — Oral Poliovirus Vaccines (OPVs) —

Cost per dose: \$2.74

Administration cost per dose: \$1.78

Total cost per dose: \$4.52

Protects individual

Cost per dose: \$0.13 Administration cost per dose: \$0.95

Total cose per dose: \$1.08

Protects community

Socioeconomic factors play large role in vaccine usage, availability

Thompson, K. M., Kalkowsa, D. A. Risk. Anal. 2021, 41(2), 349-363.

Novel Oral Poliovirus Vaccines (nOPVs)

Novel gene editing and analysis enabled next generation vaccines

Approved in March 2021, over one billion doses administered

Used in controlling vaccine derived polio outbreaks

Macklin, G. R. Vaccine. 2023, 41, A122-A127.

Adaptive Immune System

Enabling aspects and failures of adaptive immunity

Adaptive Immune System

Enabling aspects and failures of adaptive immunity

Adaptive Immune Diseases

Failures and pathogens of adaptive immune cells

Immune cells recognize and target self antigens

Adaptive Immune Diseases

Failures and pathogens of adaptive immune cells

target self antigens

cells and evade neutralization

Adaptive Immune Diseases

Failures and pathogens of adaptive immune cells

Autoimmune Diseases

Dysfunction of the adaptive immune system

Wide variety of autoimmune diseases resulting from immune targeting of distinct tissues, organs, or non-specific self proteins

Pisetsky, D. S. Nat. Rev. Nephrol. 2023, 19, 509-524.

Autoimmune Diseases

Autoimmune Diseases

Dysfunction of the adaptive immune system

Celiac Disease

- Autoimmune disease in small intestine
 - Affects 1% of world populations
- Results in malabsorption of nutritions and vitamins, as well as anemia, osteoporosis, infertility, cancer, etc.

Dysfunction of the adaptive immune system

Celiac Disease

- Autoimmune disease in small intestine
 - Affects 1% of world populations
- Results in malabsorption of nutritions and vitamins, as well as anemia, osteoporosis, infertility, cancer, etc.

Pisetsky, D. S. *Nat. Rev. Nephrol.* **2023**, *19*, 509-524. Kochhar, G. S. *et al. Cleve. Clin. J. Med.* **2016**, *83*, 217-227.

Dysfunction of the adaptive immune system

Small intestinal lamina propria

Normal conditions

Kochhar, G. S. et al. Cleve. Clin. J. Med. 2016, 83, 217-227.

Kochhar, G. S. et al. Cleve. Clin. J. Med. 2016, 83, 217-227.

Kochhar, G. S. et al. Cleve. Clin. J. Med. 2016, 83, 217-227.

Pisetsky, D. S. *Nat. Rev. Nephrol.* **2023**, *19*, 509-524. Kochhar, G. S. *et al. Cleve. Clin. J. Med.* **2016**, *83*, 217-227.

Type 1 Diabetes Dysfunction of the adaptive immune system

The Growing Global Burden of T1D. Juvenile Diabetes Cure Alliance. 2022. Pisetsky, D. S. Nat. Rev. Nephrol. 2023, 19, 509-524. Choy, E. H. S., Panayi, G. S. NEJM. 2001, 344, 907-916.

Type 1 Diabetes

Dysfunction of the adaptive immune system

Islets of Langerhans in the pancreas

Cell types secrete distinct hormones and express tissue-specific proteins

Type 1 Diabetes

Dysfunction of the adaptive immune system

Islets of Langerhans in the pancreas

Type 1 Diabetes

Dysfunction of the adaptive immune system

Islets of Langerhans in the pancreas

Treatments for Autoimmune Diseases

Dysfunction of the adaptive immune system

A variety of treatments exist, but no cures, indicating need for further research into adaptive immunity

> Pisetsky, D. S. *Nat. Rev. Nephrol.* **2023**, *19*, 509-524. Choy, E. H. S., Panayi, G. S. *NEJM*. **2001**, *344*, 907-916.

Failures and pathogens of adaptive immune cells

Failures and pathogens of adaptive immune cells

target self antigens

cells and evade neutralization

Failures and pathogens of adaptive immune cells

HIV

Targets CD4, CCR5 surface markers

Macrophage

Failures and pathogens of adaptive immune cells

Extremely transmissible

90% of exposed unvaccinated people develop disease

3% of patients die or experience brain damage

Many severe effects occur after recovery from measles

Measles

97% Effective Vaccine

No treatment

Failures and pathogens of adaptive immune cells

Failures and pathogens of adaptive immune cells

Failures and pathogens of adaptive immune cells

Hagen, A. American Society for Microbiology. 2019.

Failures and pathogens of adaptive immune cells

Recovery from measles provides lifelong immunity to measles, deteriorates immunity to all other pathogens

Hagen, A. American Society for Microbiology. 2019.

Failures and pathogens of adaptive immune cells

Five years to recover healthy levels of immunity

Failures and pathogens of adaptive immune cells

Five years to recover healthy levels of immunity

Repeated immunization

2023 Recommended Immunizations for Children from Birth Through 6 Years Old

Highlights necessity of measles vaccination in all communities

Measles and Immune Amnesia Future therapies

Measles polymerase inhibitor

Benefits

Can decrease immune amnesia, other measles symptoms

Helps prevent lethal bacteria superinfection

Best applied before or at peak viral titer

Pathogenesis of HIV

AIDS pandemic led to ~40 million deaths over past four decades

Human Immunodeficiency Virus

No vaccine available

Numerous antiretroviral therapies

Bekker, L., et al. *Nat. Rev. Dis. Primers.* **2023**, *9*, 42. Vijiyan, K. K. V., et al. *Front. Immunol.* **2017**, *8*, 580.

Pathogenesis of HIV

Human Immunodeficiency Virus

CD4+ T cell

Pathogenesis of HIV

CD4+ T cell

Binding of CD4 enables HIV entry into T cells

Bekker, L., et al. Nat. Rev. Dis. Primers. 2023, 9, 42.

Pathogenesis of HIV

CD4+ T cell

CD4+ T cell

Pathogenesis of HIV

Caspase triggered apoptosis

CD4+ T cell

Pathogenesis of HIV

Pathogenesis of HIV

Caspase triggered apoptosis

T cell directed apoptosis

HIV progression to AIDS

HIV progression to AIDS

HIV progression to AIDS

Human Immunodeficiency Virus HIV progression to AIDS

Combination Anti retroviral therapy

Reduced risk of transmission by 96%

Can prolong life from ~2 years to >40 years

HIV Reverse Transcription into genome

Severely hinders possible curative treatments

Leads to lifelong infection with HIV

Bekker, L., et al. *Nat. Rev. Dis. Primers.* **2023**, *9*, 42. Cohen, M. S., et al. *NEJM*. **2011**, *365*, 493-505. Human Immunodeficiency Virus HIV progression to AIDS

Currently no vaccine for HIV

Phase I trial has begun in the US and South Africa

CMV viral vector will deliver HIV material to prevent establishment of HIV infections

Further vaccine research may enable greater control of HIV in lower income nations

News Releases, NIH. 2023.

Adaptive Immune System

Adaptive Immune System

Questions?

