www.sciencemag.org/cgi/content/full/science.1255525/DC1



# Supplementary Materials for

## Merging photoredox with nickel catalysis: Coupling of α-carboxyl sp<sup>3</sup>carbons with aryl halides

Zhiwei Zuo, Derek Ahneman, Lingling Chu, Jack Terrett, Abigail G. Doyle,\* David W. C. MacMillan\*

\*Corresponding author. E-mail: agdoyle@princeton.edu (A.G.D.); dmacmill@princeton.edu (D.W.C.M.)

Published 5 June 2014 on *Science* Express DOI: 10.1126/science.1255525

#### This PDF file includes:

Materials and Methods Supplementary Text Tables S1 and S2 NMR Spectra References

#### **Materials and Methods**

Commercial reagents were purchased from Sigma Aldrich and purified prior to use following the guidelines of Perrin and Armarego (26). All solvents were purified by passage through columns of activated alumina. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator using an acetone-dry ice bath for volatile compounds. Chromatographic purification of products was accomplished by flash chromatography on silica gel (Fluka, 230-400 mesh). Thin layer chromatography (TLC) was performed on Analtech Uniplate 250 µm silica gel plates. Visualization of the developed chromatogram was performed by fluorescence quenching, p-anisaldehyde, potassium permanganate, or ceric ammonium molybdate stain. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Bruker 500 (500 and 125 MHz) instrument, and are internally referenced to residual protio solvent signals (note: CDCl<sub>3</sub> referenced at 7.26 and 77.0 ppm respectively). Data for <sup>1</sup>H NMR are reported as follows: chemical shift ( $\delta$  ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), integration, and coupling constant (Hz). Data for <sup>13</sup>C NMR are reported in terms of chemical shift and no special nomenclature is used for equivalent carbons. High resolution mass spectra were obtained at Princeton University mass spectrometry facilities. All amino acids were used from commercial suppliers. All aryl and heteroaryl halides were used from commercial suppliers or prepared using standard literature procedures.

### **Optimization Studies**



| Photocatalyst                                                    |  | Product % |  |
|------------------------------------------------------------------|--|-----------|--|
| Ir[dF(CF <sub>3</sub> )ppy] <sub>2</sub> (dtbbpy)PF <sub>6</sub> |  | 85%       |  |
| lr(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                     |  | 50%       |  |
| lr(dFppy) <sub>3</sub>                                           |  | 0%        |  |
| lr(ppy) <sub>3</sub>                                             |  | trace     |  |

Using 0.1 equiv NiCl<sub>2</sub>•glyme, 0.15 equiv dtbbpy, 3.0 equiv Boc-Pro-OH, 3.0 equiv  $Cs_2CO_3$ , 0.02 M, DMF at 23 °C (0.1 mmol scale).

| Nickel catalyst          | Product % |  |
|--------------------------|-----------|--|
| NiCl <sub>2</sub> •glyme | 85%       |  |
| NiBr₂•glyme              | 85%       |  |
| Ni(acac) <sub>2</sub>    | 0%        |  |
| Ni(COD) <sub>2</sub>     | 83%       |  |
| Ni(OTf) <sub>2</sub>     | 45%       |  |

Using 0.01 equiv  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ , 0.15 equiv dtbbpy, 3.0 equiv Boc-Pro-OH, 3.0 equiv Cs<sub>2</sub>CO<sub>3</sub>, 0.02 M, DMF at 23 °C (0.1 mmol scale).

| Control experiments | Product % |  |
|---------------------|-----------|--|
| no light            | 0%        |  |
| no photocatalyst    | 0%        |  |
| no nickel catalyst  | 0%        |  |
| no ligand           | 0%        |  |

Using 0.01 equiv lr[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub>, 0.1 equiv NiCl<sub>2</sub>•glyme, 0.15 equiv dtbbpy, 3.0 equiv Boc-Pro-OH, 3.0 equiv Cs<sub>2</sub>CO<sub>3</sub>, 0.02 M, DMF at 23 °C (0.1 mmol scale).

Table S1. Optimization Studies for the Decarboxylative Arylation\* % Yields calculated by <sup>1</sup>H NMR using an internal standard.



| Nickel catalyst          | Product % |  |
|--------------------------|-----------|--|
| NiCl <sub>2</sub> •glyme | 25%       |  |
| Ni(OTf) <sub>2</sub>     | 4%        |  |
| NiBr <sub>2</sub> •glyme | 15%       |  |

Using 0.01 equiv Ir[dF(CF\_3)ppy]\_2(dtbbpy)PF\_6, 0.15 equiv dtbbpy, 3.0 equiv ITol, 3.0 equiv NaOAc, 0.05 M, DMF at 23  $^{\circ}C.$ 

| Photocatalyst                                                    | Product % |  |
|------------------------------------------------------------------|-----------|--|
| Ir[dF(CF <sub>3</sub> )ppy] <sub>2</sub> (dtbbpy)PF <sub>6</sub> | 48%       |  |
| Ir(ppy) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                     | 48%       |  |
| Ru(bpy) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub>             | 46%       |  |
| Ru(bpy) <sub>3</sub> Cl <sub>2</sub> •6H <sub>2</sub> O          | 35%       |  |

Using 0.1 equiv NiCl\_2•glyme, 0.15 equiv dtbbpy, 3.0 equiv ITol, 3.0 equiv NaOAc, 0.02 M, DMF at 23  $^{\rm o}C.$ 

| Base                            | Product % |
|---------------------------------|-----------|
| КОН                             | 86%       |
| Cs <sub>2</sub> CO <sub>3</sub> | 53%       |
| NaOH                            | 57%       |
| CsOH•H <sub>2</sub> O           | 56%       |
| NaOAc                           | 48%       |

Using 0.01 equiv  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ , 0.1 equiv  $NiCl_2 \bullet glyme$ , 0.15 equiv dtbbpy, 3.0 equiv ITol, 3.0 equiv base, 0.02 M, DMF at 23 °C.

 Table S2. Optimization Studies for C-H Arylation.

 \* % Yields calculated by <sup>1</sup>H NMR using an internal standard.

#### **Supplementary Text**

General Procedure A for the Decarboxylative Arylation (Arene Scope): An ovendried 40 mL vial equipped with a Teflon septum and magnetic stir bar was charged with  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.00 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (0.06 mmol, 0.15 equiv), the corresponding aromatic halides (0.40 mmol, 1.0 equiv), Boc-Pro-OH (0.60 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (0.60 mmol, 1.5 equiv), and 20 mL of DMF. The reaction mixture was degassed by bubbling argon stream for 20 min, then irradiated with two 26 W fluorescent lamps (at approximately 2 cm away from the light source). After 72h, the reaction mixture was diluted with saturated aqueous NaHCO<sub>3</sub> solution, extracted with Et<sub>2</sub>O (3 × 100 mL). The combined organic extracts were washed with water and brine, dried over MgSO<sub>4</sub> and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

General Procedure B for the Decarboxylative Arylation (Amino Acid Scope) (26): An oven-dried 40 mL vial equipped with a Teflon septum and magnetic stir bar was charged with  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.00 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (0.06 mmol, 0.15 equiv), 4bromoacetophenone (0.40 mmol, 1.0 equiv), the corresponding amino acids (1.20 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (1.20 mmol, 3.0 equiv), and 20 mL of DMF. The reaction mixture was degassed by bubbling argon stream for 20 min, then irradiated with a 34 W blue LED lamp (Fan was used to keep the reaction temperature below 28 °C). After 72h, the reaction mixture was diluted with saturated aqueous NaHCO<sub>3</sub> solution, extracted with  $Et_2O$  (3 × 100 mL). The combined organic extracts were washed with water and brine, dried over MgSO<sub>4</sub> and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product. (Decarboxylative arylation of various amino acids with 4-bromoacetophenone could be performed on a 0.1 mmol scale using two 26 W fluorescent lamps with comparable efficiency.)

General Procedure C for the C–H Arylation: In the glovebox, an oven-dried 40 mL vial equipped with a Teflon septum and magnetic stir bar was charged with  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.00 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (0.06 mmol, 0.15 equiv), the corresponding aromatic halide (0.40 mmol, 1.0 equiv), *N,N*-dimethylaniline (1.20 mmol, 3.0 equiv), KOH (1.20 mmol, 3.0 equiv), and 20 mL of DMF. The reaction mixture was then irradiated with a 26 W fluorescent lamp (at approximately 2 cm away from the light source). After 48 h, the reaction mixture was diluted with water (100 mL) and extracted with Et<sub>2</sub>O (3 × 150 mL). The organic extracts were washed with brine (100 mL) and the combined aqueous layers were extracted once more with Et<sub>2</sub>O (50 mL). The combined organic extracts were dried over MgSO<sub>4</sub> and concentrated *in vacuo*. Purification of the crude product by flash chromatography on silica gel using the indicated solvent system afforded the desired product.

N Boc Me

*tert*-Butyl 2-(*p*-tolyl)pyrrolidine-1-carboxylate [known compound (27)]: According to the general procedure A, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-iodotoluene (89.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.60 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (15% ethyl acetate/hexane) as a pale yellow solid (81 mg, 78%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture: δ 7.10-7.03 (m, 4H), 4.92 and 4.74 (2 brs, 1H, rotamer), 3.60-3.47 (m, 2H), 2.32-2.20 (m, 4H), 1.91-1.79 (m, 3H), 1.46 (s, 3H), 1.19 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis (): δ 154.65 (154.41), 142.07 (141.13), 135.92, (129.04) 128.75, 125.43 (125.28), 79.10 (78.88), 61.03 (60.45), (47.31) 47.01, 36.02 (34.90), (28.54) 28.20, (23.47) 23.11, 21.05; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>23</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>] 284.1626, found 284.1630. IR (film) 2973, 1690, 1388, 1109, 812, 767 cm<sup>-1</sup>;



*tert*-Butyl 2-(4-fluorophenyl)pyrrolidine-1-carboxylate [known compound (28)]: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-fluoroiodobenzene (90.0 mg, 0.4 mmol,

1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv),  $Cs_2CO_3$  (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (15% ethyl acetate/hexane) as a pale yellow oil (69 mg, 65%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  7.14-7.11 (m, 2H), 7.00-6.96 (m, 2H), 4.92 and 4.73 (2 brs, 1H, rotamer), 3.61-3.60 (m, 2H), 2.31-2.25 (m, 1H), 1.87-1.77 (m, 3H), 1.46 (s, 3H), 1.19 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  161.57 (d, J = 242.3 Hz), (154.71) 154.52, 140.89 (139.79), 126.96 (d, J = 7.1 Hz), (115.19) 114.89 (d, J = 21.3 Hz), 79.33 (78.89), 60.72 (60.11), (47.31) 47.07, 36.10 (34.90), (28.50) 28.17, (23.46) 23.17; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>20</sub>FNNaO<sub>2</sub> [(M+Na)<sup>+</sup>] 288.1376, found 288.1375. IR (film) 2971, 1691, 1388, 1152, 829, 770 cm<sup>-1</sup>;



*tert*-Butyl 2-(4-methoxyphenyl)pyrrolidine-1-carboxylate [known compound (27)]: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-iodoanisole (96.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (15% ethyl acetate/hexane) as a yellow oil (82 mg, 74%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  7.08 (d, J = 7.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 4.90 and 4.72 (2 brs, 1H, rotamer), 3.79 (s, 3H), 3.61-3.51 (m, 2H), 2.28 (br, 1H), 1.92-1.78 (m, 3H), 1.46 (s, 3H), 1.20 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  158.22, 154.67, 137.31 (136.28), 126.60, (113.77) 113.44, 79.13, 60.74 (60.12), 55.27, (47.27) 46.99, 36.05 (34.88), (28.54) 28.21, (23.47) 23.14; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>23</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>] 300.1576, found 300.1562. IR (film) 2972, 1688, 1387, 1158, 826, 768 cm<sup>-1</sup>;



*tert*-Butyl 2-(4-chlorophenyl)pyrrolidine-1-carboxylate [known compound (29)]: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-tert-butyl-2,2'bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 1-chloro-4-iodobenzene (96.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (15% ethyl acetate/hexane) as a pale yellow solid (87 mg, 77%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  7.27 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 4.90 and 4.73 (2 brs, 1H, rotamer), 3.62-3.49 (m, 2H), 2.33-2.28 (m, 1H), 1.92-1.82 (m, 2H), 1.80-1.74 (m, 1H), 1.45 (s, 3H), 1.20 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  154.51, 143.76 (142.73), (132.19) 132.10, (128.52) 128.30, 126.91 (126.84), 79.45, 60.80 (60.25), (47.39) 47.11, 36.03 (34.87), (28.53) 28.22, (23.55) 23.19; HRMS (ESI) m/z calcd for  $C_{15}H_{20}NNaO_2Cl$  [(M+Na)<sup>+</sup>] 304.1080, found 304.1078. IR (film) 2973, 1690, 1386, 1156, 1089, 821, 773 cm<sup>-1</sup>:

Boc

tert-Butyl 2-(4-acetylphenyl)pyrrolidine-1-carboxylate: According to the general procedure A, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 μmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.80 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-tert-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (81.9 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (20% ethyl acetate/hexane) as a pale yellow solid (100 mg, 86%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture: δ 7.91 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 4.97 and 4.81 (2 brs, 1H, rotamer), 3.66-3.52 (m, 2H), 2.60-2.58 (m, 3H), 2.38-2.32 (m, 1H), 1.92-1.78 (m, 3H), 1.45 (s, 3H), 1.17 (s. 6H): <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  197.75, (154.43) 154.37, 150.79 (149.80), 135.66, (128.63) 128.41, 125.62 (125.54), (79.51) 79.45, 61.14 (60.65), (47.43) 47.11, 35.88 (34.76), (28.46) 28.12, 26.60, (23.63) 23.23; HRMS (ESI) m/z calcd for  $C_{17}H_{23}NNaO_3$  [(M+Na)<sup>+</sup>] 312.1576, found 312.1558. IR (film) 2974, 1682, 1389, 1266,  $1159, 830 \text{ cm}^{-1};$ 



*tert*-Butyl 2-(4-(methoxycarbonyl)phenyl)pyrrolidine-1-carboxylate [known compound (28)]: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ 

(4.5 mg, 4.0 μmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), methyl-4-bromobenzoate (88.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (10% ethyl acetate/hexane) as a yellow oil (111 mg, 90%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture: δ 7.97 (d, J = 10.0 Hz, 2H), 7.24 (d, J = 5.0Hz, 2H), 4.97 and 4.80 (2 brs, 1H, rotamer), 3.91 (s, 3H), 3.65-3.52 (m, 2H), 2.37-2.31 (m, 1H), 1.92-1.77 (m, 3H), 1.45 (s, 3H), 1.16 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis (): δ 166.94, 154.37, 150.58 (149.54), (129.77) 129.58, 128.47, 125.45 (125.38), 79.44, 61.19 (60.63), 51.99 (51.66), (47.37) 47.12, 35.91 (34.74), (28.44) 28.10, (23.57) 23.25; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>23</sub>NNaO<sub>4</sub> [(M+Na)<sup>+</sup>] 328.1525, found 328.1517. IR (film) 2974, 1690, 1388, 1274, 1157, 1105, 704 cm<sup>-1</sup>;



*tert*-Butyl 2-(4-cyano-3-fluorophenyl)pyrrolidine-1-carboxylate: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromo-2-fluorobenzonitrile (82.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (25% ethyl acetate/hexane) as a pale yellow oil (87 mg, 75%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)

rotameric mixture:  $\delta$  7.56 (t, J = 7.0 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 9.5 Hz, 1H), 4.92 and 4.78 (2 brs, 1H, rotamer), 3.66-3.55 (m, 2H), 2.40-2.32 (m, 1H), 1.93-1.87 (m, 2H), 1.82-1.75 (m, 1H), 1.45 (s, 4H), 1.21 (s, 5H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  (163.40) 163.27 (d, J = 257.3 Hz), (154.50) 154.37, 154.40 (d, J = 6.5 Hz) (153.45), 134.38 (d, J = 8.9 Hz), (133.50) 133.36, 121.97 (d, J = 3.1 Hz), (114.11) 114.03, 113.42 (d, J = 19.9 Hz), (80.04) 79.95, 60.94 (60.50), (47.46) 47.16, 35.75 (34.63), (28.40) 28.13, (23.71) 23.27; HRMS (ESI) m/z calcd for C<sub>16</sub>H<sub>19</sub>FN<sub>2</sub>NaO<sub>2</sub> [(M+Na)<sup>+</sup>] 313.1328, found 313.1288. IR (film) 2977, 2235, 1689, 1388, 1365, 1161, 1105, 733 cm<sup>-1</sup>;



*tert*-Butyl 2-(3,5-bis(trifluoromethyl)phenyl)pyrrolidine-1-carboxylate: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 1,3-bis(trifluoromethyl)-5-bromobenzene (118.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (10% ethyl acetate/hexane) as a pale yellow oil (133 mg, 87%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  7.75-7.73 (m, 1H), 7.62-7.58 (m, 2H), 5.01 and 4.83 (2 brs, 1H, rotamer), 3.69-3.54 (m, 2H), 2.44-2.40 (m, 1H), 1.94-1.83 (m, 3H), 1.46 (s, 3H), 1.16 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture,

resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  (154.52) 154.18, 147.92 (146.82), 131.61 (q, J = 33.8 Hz), 125.85 (125.59), 123.34 (q, J = 271.3 Hz), (120.74) 120.56, (80.08) 80.00, 60.94 (60.32), (47.46) 47.28, 36.08 (34.81), (28.32) 27.98, (23.59) 23.47; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>19</sub>F<sub>6</sub>NNaO<sub>2</sub> [(M+Na)<sup>+</sup>] 406.1218, found 406.1196. IR (film) 2978, 1694, 1378, 1275, 1125, 896, 681 cm<sup>-1</sup>;

tert-Butyl 2-(4-(trifluoromethyl)phenyl)pyrrolidine-1-carboxylate: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromobenzotrifluoride (91.9 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (10% ethyl acetate/hexane) as a pale vellow oil (111 mg, 88%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  7.56 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 4.97 and 4.81 (2 brs, 1H, rotamer), 3.66-3.55 (m, 2H), 2.38-2.32 (m, 1H), 1.91-1.86 (m, 2H), 1.82-1.77 (m, 1H), 1.46 (s, 3H), 1.18 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  (154.52) 154.44, 149.29 (148.26), 128.88 (q, J = 31.3 Hz), 125.79 (125.72), (125.41) 125.19, 124.25 (q, J = 270.0Hz), 79.60, 61.06 (60.51), 47.44 (47.14), 39.97 (34.82), (28.49) 28.15, (23.57) 23.23; HRMS (ESI) m/z calcd for  $C_{16}H_{20}F_3NNaO_2$  [(M+Na)<sup>+</sup>] 338.1344, found 338.1324. IR (film) 2975, 1692, 1322, 1065, 832, 773 cm<sup>-1</sup>;

Вос Me

tert-Butyl 2-(2-methylpyridin-4-yl)pyrrolidine-1-carboxylate: According to the general procedure A, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromo-2-methylpyridine (71.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (50% ethyl acetate/hexane) as a pale yellow oil (90 mg, 85%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  8.40 (d, J = 5.0 Hz, 1H), 6.95 (s, 1H), 6.90 (d, J = 5.0 Hz, 1H), 4.87-4.86 and 4.71-4.68 (2 m, 1H, rotamer), 3.63-3.49 (m, 2H), 2.53 (s, 3H), 2.36-2.29 (m, 1H), 1.90-1.85 (m, 2H), 1.81-1.76 (m, 1H), 1.46 (s, 3H), 1.20 (s, 6H); <sup>13</sup>C NMR (125) MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  158.23, 154.33 (154.21), 153.35, (149.06) 148.95, (120.15) 120.06, 117.89 (117.70), 79.58, 60.38 (59.91), (47.31) 47.02, 35.38 (34.28), (28.40) 28.07, (24.42) 24.37, (23.57) 23.16; HRMS (ESI) m/z calcd for  $C_{15}H_{23}N_2O_2$  [(M+H)<sup>+</sup>] 263.1760, found 263.1758. IR (film) 2974, 1690, 1387, 1160, 1111, 828, 771 cm<sup>-1</sup>;



tert-Butyl 2-(6-(trifluoromethyl)pyridin-3-yl)pyrrolidine-1-carboxylate: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 5-bromo-2-(trifluoromethyl)pyridine (92.9 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (20% ethyl acetate/hexane) as a pale vellow solid (104 mg, 82%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  8.58 (s, 1H), 7.68-7.63 (m, 2H), 5.01 and 4.86 (2 brs, 1H, rotamer), 3.67-3.57 (m, 2H), 2.43-2.40 (m, 1H), 1.96-1.91 (m, 2H), 1.84-1.82 (m, 1H), 1.45 (s, 4H), 1.17 (s, 5H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  (154.47) 154.07, 148.01 (147.77), 146.61 (q, J = 35.0 Hz) [146.48 (q, J = 35.0 Hz)], 143.79 (142.80), (134.36) 134.20, 121.59 (q, J = 272.5 Hz), (120.16) 120.01, 79.97, 58.91 (58.58), (47.35) 47.13, 35.80 (34.55), (28.36) 28.08, (23.63) 23.28; HRMS (ESI) m/z calcd for  $C_{15}H_{20}F_3N_2O_2$ [(M+H)<sup>+</sup>] 317.1477, found 317.1478. IR (film) 2976, 1690, 1387, 1337, 1130, 1084, 845,  $736 \text{ cm}^{-1}$ ;



*tert*-Butyl 2-(4-methylpyridin-2-yl)pyrrolidine-1-carboxylate: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg,

0.06 mmol, 0.15 equiv), 2-bromo-4-methylpyridine (71.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.00 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (30% ethyl acetate/hexane) as a pale yellow oil (70 mg, 67%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture: δ 8.39-8.37 (m, 1H), 6.96-6.92 (m, 2H), 4.96-4.95 and 4.84-4.82 (2 m, 1H, rotamer), 3.67-3.50 (m, 2H), 2.38-2.26 (m, 4H), 2.01-1.96 (m, 1H), 1.91-1.84 (m, 2H), 1.46 (s, 3H), 1.20 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis (): δ 163.47 (163.23), (154.63) 154.52, (149.06) 148.75, (147.32) 147.23, (122.63) 122.46, (120.88) 120.37, (79.27) 79.17, 62.72 (62.06), (47.41) 47.03, 34.17 (33.05), (28.47) 28.14, (23.75) 23.21, (21.21) 21.08; HRMS (ESI) m/z calcd for  $C_{15}H_{23}N_2O_2$  [(M+H)<sup>+</sup>] 263.1760, found 263.1754. IR (film) 2973, 1690, 1388, 1159, 1112, 822, 770 cm<sup>-1</sup>;



*tert*-Butyl 2-(5-(trifluoromethyl)pyridin-2-yl)pyrrolidine-1-carboxylate: According to the general procedure A,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 2-bromo-5-(trifluoromethyl)pyridine (92.9 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (20% ethyl acetate/hexane) as a yellow oil (76 mg, 60%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  8.80 (s, 1H), 7.86 (t, *J* = 8.0 Hz, 1H), 7.31 (t, *J* = 8.0 Hz, 1H), 5.045.02 and 4.94-4.91 (2 m, 1H, rotamer), 3.67-3.52 (m, 2H), 2.43-2.32 (m, 1H), 2.04-1.88 (m, 3H), 1.45 (s, 3H), 1.20 (s, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  167.89 (166.77), (154.67) 154.28, [146.27 (q, *J* = 3.8 Hz)] 146.04 (q, *J* = 3.8 Hz), [133.62 (q, *J* = 3.8 Hz)] 133.37 (q, *J* = 3.8 Hz), 124.69 (q, *J* = 32.5 Hz), 123.61 (q, *J* = 270.0 Hz), (119.92) 119.46, (79.73) 79.67, 62.72 (62.16), (47.47) 47.12, 34.23 (32.99), (28.44) 28.15, (23.88) 23.25; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>20</sub>F<sub>3</sub>N<sub>2</sub>O<sub>2</sub> [(M+H)<sup>+</sup>] 317.1477, found 317.1474. IR (film) 2976, 1696, 1392, 1327, 1128, 1080, 1015, 773 cm<sup>-1</sup>.



*tert*-Butyl 2-(5-fluoropyridin-2-yl)pyrrolidine-1-carboxylate: According to the general procedure A, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 2-chloro-5-fluoropyridine (52.6 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (10% ethyl acetate/hexane) as a clear oil (68 mg, 64%). <sup>1</sup>H NMR (500 MHz, (CDCl<sub>3</sub>)  $\delta$  rotameric mixture: 8.38 (d, *J* = 2.9 Hz, 1H), 7.39-7.29 (m, 1H), 7.22-7.14 (m, 1H), 4.97 and 4.86 (2 brs, 1H), 3.66-3.46 (m, 2H), 2.43-2.20 (m, 1H), 2.08-1.80 (m, 3H), 1.44 (s, 3H), 1.21 (s, 6H); <sup>13</sup>C NMR (125 MHz, (CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  159.69 (158.52), [158.26 (d, *J* = 253.9 Hz)] 158.20 (d, *J* = 253.8 Hz), (154.67) 154.41, [137.34 (d, *J* = 23.8 Hz)] 137.03 (d, *J* = 23.3 Hz), [123.01 (d,

J = 18.1 Hz] 122.94 (d, J = 18.2 Hz), [121.22 (d, J = 4.6 Hz)] 120.62 (d, J = 4.1 Hz), 79.48 (79.42), 62.20 (61.56), 47.38 (47.02), 34.28 (32.98), 28.47 (28.19), 23.82 (23.18); HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>19</sub>FN<sub>2</sub>NaO<sub>2</sub> [(M+Na)<sup>+</sup>] 289.1328, found 289.1323. IR (film) 2975, 2878, 1692, 1586, 1456, 1389, 1365, 1225, 1161, 1112, 1082 cm<sup>-1</sup>;

$$\begin{array}{c|c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

tert-Butyl 2-(6-phenylpyrimidin-4-yl)pyrrolidine-1-carboxylate: According to the general procedure A, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4.4'-di-*tert*-butyl-2.2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-chloro-6-phenylpyrimidine (68.6 mg, 0.4 mmol, 1.0 equiv), Boc-Pro-OH (129.0 mg, 0.6 mmol, 1.5 equiv), Cs<sub>2</sub>CO<sub>3</sub> (195.6 mg, 0.6 mmol, 1.5 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (20% ethyl acetate/hexane) as a clear oil (85 mg, 65%). <sup>1</sup>H NMR (500 MHz, (CDCl<sub>3</sub>) rotameric mixture: δ 9.17 (s, 1H), 8.09-8.02 (m, 2H), 7.57 (s, 1H), 7.52-7.47 (m, 3H), 4.97 and 4.85 (2 brs, 1H, rotamer), 3.75-3.53 (m, 2H), 2.48-2.32 (m, 1H), 2.09-1.89 (m, 3H), 1.48 (s, 3H), 1.22 (s, 6H); <sup>13</sup>C NMR (125 MHz, (CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  172.88 (171.70), (164.30) 164.16, (158.80) 158.71, (154.69) 154.30, (137.06) 136.67, 131.04 (130.77), 129.06 (128.90), (127.23) 127.09, (113.42) 112.47, 79.86, 62.45 (61.84), (47.51) 47.20, 33.94 (32.67), (28.46) 28.21, (24.00) 23.37; HRMS (ESI) m/z calcd for  $C_{19}H_{24}N_3O_2$  [(M+H)<sup>+</sup>] 326.1869, found 326.1862. IR (film) 2974, 2931, 1691, 1588, 1477, 1444, 1387, 1365, 1251, 1114, 1082  $cm^{-1};$ 

Ċbz

Benzyl 2-(4-acetylphenyl)pyrrolidine-1-carboxylate: According to the general procedure B, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-tert-butyl-2,2'-bipyridyl (16.10 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), Cbz-Pro-OH (305.0 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (20% ethyl acetate/hexane) as a pale vellow oil (120 mg, 93%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture: δ 7.92-7.87 (m, 2H), 7.37-7.13 (m, 6H), 6.89 (d, J = 7.0 Hz, 1H), 5.17-4.92 (m, 3H), 3.71-3.62 (m, 2H), 2.60 and 2.58 (2s, 3H, rotamer), 2.40-2.33 (m, 1H), 1.93-1.89 (m, 2H), 1.87-1.82 (m, 1H): <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis (): § 197.64, 154.86, 149.90 (149.17), (136.85) 136.49, 135.86, (128.68) 128.62, (128.50) 128.17, (128.01) 127.93, (127.65) 127.41, 125.71, (66.87) 66.68, (61.27) 60.96, 47.73 (47.28), 35.78 (34.72), 26.65, (23.74) 23.06; HRMS (ESI) m/z calcd for  $C_{20}H_{22}NO_3$  [(M+H)<sup>+</sup>] 324.1600, found 324.1586. IR (film) 2961, 1698, 1679, 1407, 1265, 1106, 731, 696 cm<sup>-1</sup>;

*tert*-**Butyl 2-(4-acetylphenyl)piperidine-1-carboxylate** [known compound (*30*)]: According to the general procedure B,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), Boc-Pip-OH (276 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (10% ethyl acetate/hexane) as a pale yellow oil (99 mg, 82%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.43 (s, 1H), 4.07 (d, *J* = 13.0 Hz, 1H), 2.76 (td, *J* = 13.0 Hz, *J* = 3.5 Hz, 1H), 2.60 (s, 3H), 2.32-2.29 (m, 1H), 1.96-1.89 (m, 1H), 1.65-1.52 (m, 3H), 1.46 (s, 9H), 1.39-1.33 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  197.71, 155.52, 146.46, 135.44, 128.65, 126.68, 79.82, 53.42, 40.33, 28.39, 28.26, 26.60, 25.24, 19.37; HRMS (ESI) m/z calcd for C<sub>18</sub>H<sub>25</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>] 326.1732, found 326.1719. IR (film) 2936, 1680, 1266, 1154, 1031, 828, 734 cm<sup>-1</sup>;



*tert*-butyl 3-(4-acetylphenyl)morpholine-4-carboxylate: According to the general procedure B,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82 mg, 0.4 mmol, 1.0 equiv), Boc-Morph-OH (277.2 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (17% ethyl acetate/hexane) as a pale yellow solid (74.0 mg, 61%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.95 (d, *J* = 8.5 Hz,

2H), 7.55 (d, J = 8.0 Hz, 2H), 5.11 (br, 1H), 4.35 (d, J = 7.0 Hz, 1H), 3.91-3.87 (m, 2H), 3.83-3.80 (m, 1H), 3.61 (td, J = 11.5 Hz, J = 2.5 Hz, 1H), 3.11 (td, J = 13.0 Hz, J = 3.5Hz, 1H), 2.60 (s, 3H), 1.47 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  197.70, 154.76, 144.88, 136.01, 128.52, 127.77, 80.56, 68.91, 66.93, 53.26, 39.97, 28.35, 26.63; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>23</sub>NNaO<sub>4</sub> [(M+Na)<sup>+</sup>] 328.1525, found 328.1512. IR (film) 2975, 1681, 1266, 1163, 1109, 868, 733 cm<sup>-1</sup>;



*tert*-Butyl (1-(4-acetylphenyl)-2-methylpropyl)carbamate: According to the general procedure B, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), Boc-Val-OH (260.7 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (10% ethyl acetate/hexane) as a pale yellow solid (83 mg, 72%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 5.12 (brs, 1H), 4.48 (s, 1H), 2.59 (s, 3H), 1.98 (br, 1H), 1.46 (s, 9H), 0.93 (d, *J* = 7.0 Hz, 3H), 0.85 (d, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  197.83, 154.41, 147.83, 135.90, 128.46, 126.97, 79.59, 60.35, 33.58, 28.35, 26.62, 19.67, 18.35; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>25</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>] 314.1732, found 314.1684. IR (film) 3348, 2970, 1679, 1364, 1166, 1007, 736 cm<sup>-1</sup>;



*tert*-Butyl 3-(2-(4-acetylphenyl)-2-((*tert*-butoxycarbonyl)amino)ethyl)-1*H*-indole-1carboxylate: According to the general procedure B,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), Boc-Trp(Boc)-OH (485.0 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (12% ethyl acetate/hexane) as a yellow solid (159 mg, 83%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (br, 1H), 7.91 (d, *J* = 8.5 Hz, 2H), 7.36 (m, 3H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.26-7.22 (m, 1H), 7.19 (t, *J* = 7.5 Hz, 1H), 5.11 (br, 1H), 4.98 (br, 1H), 3.14 (s, 2H), 2.59 (s, 3H), 1.64 (s, 9H), 1.39 (br, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  197.76, 155.18, 149.57, 148.03, 136.16, 135.37, 130.42, 128.70, 126.52, 124.52, 124.00, 122.57, 118.86, 115.87, 115.24, 83.65, 79.82, 54.27, 32.55, 28.32, 28.19, 26.65; HRMS (ESI) m/z calcd for C<sub>28</sub>H<sub>34</sub>N<sub>2</sub>NaO<sub>5</sub> [(M+Na)<sup>+</sup>] 501.2365, found 501.2342. IR (film) 3357, 2979, 1681, 1366, 1156, 1083, 733 cm<sup>-1</sup>;



**Benzyl 4-(4-acetylphenyl)-4-((***tert***-butoxycarbonyl)amino)butanoate:** According to the general procedure B,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv),

NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), Boc-Glu(OBzl)-OH (413.0 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (20% ethyl acetate/hexane) as a pale yellow solid (126 mg, 77%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 8.0 Hz, 2H), 7.39-7.33 (m, 7H), 5.11 (s, 2H), 5.01 (br, 1H), 4.72 (br, 1H), 2.59 (s, 3H), 2.45-2.37 (m, 2H), 2.11-2.05 (m, 2H), 1.40 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  197.73, 172.88, 155.27, 147.91, 136.20, 135.71, 128.82, 128.60, 128.35, 128.29, 126.44, 79.73, 66.53, 54.29, 31.42, 31.09, 28.36, 26.64; HRMS (ESI) m/z calcd for C<sub>24</sub>H<sub>29</sub>NNaO<sub>5</sub> [(M+Na)<sup>+</sup>] 434.1943, found 434.1924. IR (film) 3380, 1680, 1511, 1250, 1162, 731 cm<sup>-1</sup>;



*tert*-Butyl (1-(4-acetylphenyl)-3-(methylthio)propyl)carbamate: According to the general procedure B,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), Boc-Met-OH (300.0 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (20% ethyl acetate/hexane) as a pale yellow solid (107 mg, 83%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 5.00 (br, 1H), 4.82 (br, 1H), 2.59 (s, 3H), 2.49-2.43 (m, 2H), 2.10 (s, 3H), 2.06-2.01 (m, 2H), 1.41 (s, 9H); <sup>13</sup>C NMR (125

MHz, CDCl<sub>3</sub>)  $\delta$  197.74, 155.18, 147.97, 136.12, 128.78, 126.49, 79.68, 53.96, 35.94, 30.63, 28.34, 26.63, 15.51; HRMS (ESI) m/z calcd for C<sub>17</sub>H<sub>25</sub>NNaO<sub>3</sub>S [(M+Na)<sup>+</sup>] 346.1453, found 346.1433. IR (film) 3342, 2976, 1678, 1363, 1266, 1163, 734 cm<sup>-1</sup>;



*tert*-Butyl (1-(4-acetylphenyl)-3-methylbutyl)(methyl)carbamate: According to the general procedure B, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), Boc-*N*-Me-Leu-OH (296.0 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.20 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (9% ethyl acetate/hexane) as a pale yellow oil (117 mg, 91%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) rotameric mixture:  $\delta$  7.92 (d, *J* = 8.0 Hz, 2H), 7.38-7.37 (m, 2H), 5.54 and 5.33 (2 brs, 1H, rotamer), 2.60-2.57 (m, 6H), 1.86 (br, 1H), 1.68-1.64 (m, 2H), 1.49 (s, 9H), 1.00 (m, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) rotameric mixture, resonances for minor rotamer are enclosed in parenthesis ():  $\delta$  197.73, 155.90 (156.17), 146.62, 136.00, 128.46, (127.56) 127.44, 80.00 (79.61), 55.54 (54.46), 39.29 (39.01), 28.47, 26.64, 24.79, 23.49, 21.80; HRMS (ESI) m/z calcd for C<sub>19</sub>H<sub>29</sub>NNaO<sub>3</sub> [(M+Na)<sup>+</sup>] 342.2045, found 342.2048. IR (film) 2958, 1681, 1364, 1266, 1143, 829, 770 cm<sup>-1</sup>;

**1-(4-(Tetrahydrofuran-2-yl)phenyl)ethan-1-one** [known compound (*31*)]: According to the general procedure B, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-bromoacetophenone (82.0 mg, 0.4 mmol, 1.0 equiv), tetrahydro-2-furoic acid (139.0 mg, 1.2 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (391.2 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (15% ethyl acetate/hexane) as a pale yellow solid (63.0 mg, 82%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 4.95 (t, *J* = 7.5 Hz, 1H), 4.11 (q, *J* = 7.5 Hz, 1H), 3.97 (q, *J* = 7.0 Hz, 1H), 2.59 (s, 3H), 2.40-2.34 (m, 1H), 2.04-1.99 (m, 2H), 1.81-1.74 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 197.87, 149.21, 136.04, 128.48, 125.60, 80.14, 68.90, 34.73, 26.66, 25.98; HRMS (ESI) m/z calcd for C<sub>12</sub>H<sub>15</sub>O<sub>2</sub> [(M+H)<sup>+</sup>] 191.1072, found 191.1064. IR (film) 2965, 2896, 1680,1265, 1061, 831 cm<sup>-1</sup>;



**1-(4-Benzylphenyl)ethan-1-one** [known compound (*32*)]: According to the general procedure B,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (1.2 mg, 1.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (2.2 mg, 0.01 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (4.0 mg, 0.015 mmol, 0.15 equiv), 4-bromoacetophenone (20.5 mg, 0.1 mmol, 1.0 equiv), phenylacetic acid (40.5 mg, 0.3 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (97.8 mg, 0.3 mmol, 3.0 equiv), and 5 mL of

DMF were used. The product was isolated by flash chromatography (8% ethyl acetate/hexane) as a pale yellow solid (18 mg, 85%). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.93-7.90 (m, 2H), 7.35-7.25 (m, 5H), 7.22-7.19 (m, 2H), 4.06 (s, 2H), 2.60 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  197.83, 146.83, 140.05, 135.25, 129.13, 128.96, 128.66, 126.44, 41.93, 26.62; HRMS (ESI) m/z calcd for C<sub>15</sub>H<sub>15</sub>O [(M+H)<sup>+</sup>] 211.1123, found 211.1114. IR (film) 3028, 1681, 1606, 1357, 1267, 728, 699 cm<sup>-1</sup>;



1-(4-(4-(Trifluoromethoxy)benzyl)phenyl)ethan-1-one: According to the general procedure B, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (1.2 mg, 1.0 μmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (2.2 mg, 0.01 mmol, 0.1 equiv), 4,4'-di-tert-butyl-2,2'-bipyridyl (4.0 mg, 0.015 mmol, 0.15 4-bromoacetophenone (20.5 mg. 0.1 equiv). mmol. 1.0 equiv). 4-(trifluoromethoxy)phenylacetic acid (66.0 mg, 0.3 mmol, 3.0 equiv), Cs<sub>2</sub>CO<sub>3</sub> (97.8 mg, 0.3 mmol, 3.0 equiv), and 5 mL of DMF were used. The product was isolated by flash chromatography (8% ethyl acetate/hexane) as a pale yellow solid (24 mg, 81%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): δ 7.91-7.89 (m, 2H), 7.28-7.26 (m, 2H), 7.20-7.18 (m, 2H), 7.15-7.13 (m. 2H), 4.04 (s. 2H), 2.98 (s. 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>); δ 197.72, 147.82, 146.01, 138.79, 135.48, 130.18, 129.10, 128.77, 121.20, 120.47 (q, J = 255 Hz), 41.14, 26.61; HRMS (ESI) m/z calcd for  $C_{16}H_{14}F_{3}O_{2}$  [(M+H)<sup>+</sup>] 295.0946, found 295.0954. IR (film) 2924, 1682, 1508, 1258, 1162, 1018, 811 cm<sup>-1</sup>;



*N*-Methyl-*N*-(4-methylbenzyl)aniline [(known compound (*33*)]: According to the general procedure C, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-iodotoluene (87.2 mg, 0.4 mmol, 1.0 equiv), *N*,*N*-dimethylaniline (152.1 µL, 1.2 mmol, 3.0 equiv), KOH (67.3 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (6% ethyl acetate/hexane) as a clear oil (71 mg, 84%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.13 (td, *J* = 7.1, 2.1 Hz, 2H), 7.04 (s, 4H), 6.67 (d, *J* = 7.9 Hz, 2H), 6.62 (tt, *J* = 7.3, 1.1 Hz, 1H), 4.41 (s, 2H), 2.91 (s, 3H), 2.25 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  149.90, 136.54, 136.01, 129.35, 129.28, 126.83, 116.54, 112.45, 56.45, 38.53, 21.21.



*N*-(4-Chlorobenzyl)-*N*-methylaniline [known compound (*34*)]: According to the general procedure C,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 1-chloro-4-iodobenzene (95.4 mg, 0.4 mmol, 1.0 equiv), *N*,*N*-dimethylaniline (152.1 µL, 1.2 mmol, 3.0 equiv), KOH (67.3 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (8% ethyl acetate/hexane) as a clear oil (67 mg, 72%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32 (d,

J = 8.4 Hz, 2H), 7.27 (dd, J = 8.6, 7.2 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 6.80-6.75 (m, 3H), 4.53 (s, 2H), 3.05 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  149.62, 137.65, 132.64, 129.35, 128.82, 128.22, 116.95, 112.54, 56.27, 38.69.



*N*-(**4**-Methoxybenzyl)-*N*-methylaniline [known compound (*34*)]: According to the general procedure C, Ir[dF(CF<sub>3</sub>)ppy]<sub>2</sub>(dtbbpy)PF<sub>6</sub> (4.5 mg, 4.0 µmol, 0.01 equiv), NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 4-iodoanisole (93.6 mg, 0.4 mmol, 1.0 equiv), *N*,*N*-dimethylaniline (152.1 µL, 1.2 mmol, 3.0 equiv), KOH (67.3 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (0-8% ethyl acetate/hexane) as a clear oil (85 mg, 93%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (t, *J* = 7.7 Hz, 2H), 7.20 (d, *J* = 8.2 Hz, 2H), 6.90 (d, *J* = 8.2 Hz, 2H), 6.81 (d, *J* = 8.2 Hz, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 4.51 (s, 2H), 3.83 (s, 3H), 3.03 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  158.68, 149.92, 131.00, 129.28, 128.06, 116.61, 114.05, 112.58, 56.14, 55.39, 38.43.



*N*-Methyl-*N*-((6-(trifluoromethyl)pyridin-3-yl)methyl)aniline: According to the general procedure C,  $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$  (4.5 mg, 4.0 µmol, 0.01 equiv),

NiCl<sub>2</sub>•glyme (8.8 mg, 0.04 mmol, 0.1 equiv), 4,4'-di-*tert*-butyl-2,2'-bipyridyl (16.1 mg, 0.06 mmol, 0.15 equiv), 5-bromo-2-(trifluoromethyl)pyridine (90.4 mg, 0.4 mmol, 1.0 equiv), *N*,*N*-dimethylaniline (152.1 µL, 1.2 mmol, 3.0 equiv), KOH (67.3 mg, 1.2 mmol, 3.0 equiv), and 20 mL of DMF were used. The product was isolated by flash chromatography (8% ethyl acetate/hexane) as a yellow oil (64 mg, 60%). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.66 (s, 1H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.27 (t, *J* = 7.4 Hz, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 2H), 4.64 (s, 2H), 3.07 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  149.16, 149.07, 147.15 (q, *J* = 34.6 Hz), 138.19, 135.86, 129.53, 121.72 (q, *J* = 272.5 Hz), 120.49, 117.79, 112.86, 54.45, 38.97; HRMS (ESI) m/z calcd for C<sub>14</sub>H<sub>14</sub>F<sub>3</sub>N<sub>2</sub> [(M+H)<sup>+</sup>] 267.1109, found 267.1104.





























































#### **References and Notes**

- 1. D. A. Nicewicz, D. W. C. MacMillan, Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. *Science* **322**, 77–80 (2008). doi:10.1126/science.1161976 Medline
- M. A. Ischay, M. E. Anzovino, J. Du, T. P. Yoon, Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008). doi:10.1021/ja805387f Medline
- J. M. R. Narayanam, J. W. Tucker, C. R. J. Stephenson, Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. *J. Am. Chem. Soc.* 131, 8756–8757 (2009). doi:10.1021/ja9033582 Medline
- 4. D. S. Hamilton, D. A. Nicewicz, Direct catalytic anti-markovnikov hydroetherification of alkenols. J. Am. Chem. Soc. 134, 18577–18580 (2012). doi:10.1021/ja309635w Medline
- M. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan, Photoredox activation for the direct β-arylation of ketones and aldehydes. *Science* 339, 1593– 1596 (2013). doi:10.1126/science.1232993 Medline
- M. R. Netherton, G. C. Fu, Nickel-Catalyzed Cross-Couplings of Unactivated Alkyl Halides and Pseudohalides with Organometallic Compounds. *Adv. Synth. Catal.* 346, 1525–1532 (2004). doi:10.1002/adsc.200404223
- 7. A. Rudolph, M. Lautens, Secondary Alkyl Halides in Transition-Metal-Catalyzed Cross-Coupling Reactions. Angew. Chem. Int. Ed. 48, 2656–2670 (2009). doi:10.1002/anie.200803611
- 8. The successful merger of photoredox and transition metal catalysis has been demonstrated for the specific installation of unique functionality (e.g., CF<sub>3</sub>) (9–14).
- M. Osawa, H. Nagai, M. Akita, Photo-activation of Pd-catalyzed Sonogashira coupling using a Ru/bipyridine complex as energy transfer agent. *Dalton Trans.* (8): 827– 829 (2007). doi:10.1039/b618007h Medline
- 10. D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, Room-temperature C-H arylation: merger of Pd-catalyzed C-H functionalization and visible-light photocatalysis. *J. Am. Chem. Soc.* 133, 18566–18569 (2011). doi:10.1021/ja208068w Medline
- Y. Ye, M. S. Sanford, Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. *J. Am. Chem. Soc.* 134, 9034–9037 (2012). doi:10.1021/ja301553c Medline
- M. Rueping, R. M. Koenigs, K. Poscharny, D. C. Fabry, D. Leonori, C. Vila, Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions—C-C bond formation using visible light. *Chemistry* 18, 5170–5174 (2012). doi:10.1002/chem.201200050 Medline

- B. Sahoo, M. N. Hopkinson, F. Glorius, Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013). doi:10.1021/ja400311h Medline
- 14. X. Z. Shu, M. Zhang, Y. He, H. Frei, F. D. Toste, Dual visible light photoredox and gold-catalyzed arylative ring expansion. J. Am. Chem. Soc. 136, 5844–5847 (2014). doi:10.1021/ja500716j Medline
- 15. S. Biswas, D. J. Weix, Mechanism and selectivity in nickel-catalyzed crosselectrophile coupling of aryl halides with alkyl halides. *J. Am. Chem. Soc.* **135**, 16192–16197 (2013). <u>doi:10.1021/ja407589e Medline</u>
- S. L. Zultanski, G. C. Fu, Nickel-catalyzed carbon-carbon bond-forming reactions of unactivated tertiary alkyl halides: Suzuki arylations. J. Am. Chem. Soc. 135, 624– 627 (2013). doi:10.1021/ja311669p Medline
- 17. Z. Zuo, D. W. C. MacMillan, Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. *J. Am. Chem. Soc.* 136, 5257–5260 (2014). doi:10.1021/ja501621q Medline
- 18. A. McNally, C. K. Prier, D. W. C. MacMillan, Discovery of an α-amino C-H arylation reaction using the strategy of accelerated serendipity. *Science* 334, 1114–1117 (2011). doi:10.1126/science.1213920 Medline
- T. J. A. Graham, J. D. Shields, A. G. Doyle, Transition metal-catalyzed cross coupling with N-acyliminium ions derived from quinolines and isoquinolines. *Chem. Sci.* 2, 980 (2011). doi:10.1039/c1sc00026h
- 20. K. T. Sylvester, K. Wu, A. G. Doyle, Mechanistic investigation of the nickelcatalyzed Suzuki reaction of N,O-acetals: evidence for boronic acid assisted oxidative addition and an iminium activation pathway. *J. Am. Chem. Soc.* 134, 16967–16970 (2012). doi:10.1021/ja3079362 Medline
- 21. J. D. Shields, D. T. Ahneman, T. J. A. Graham, A. G. Doyle, Enantioselective, nickelcatalyzed Suzuki cross-coupling of quinolinium ions. *Org. Lett.* 16, 142–145 (2014). doi:10.1021/ol4031364 Medline
- 22. M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras, S. Bernhard, Single-Ilyer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. *Chem. Mater.* **17**, 5712–5719 (2005). <u>doi:10.1021/cm051312+</u>
- 23. M. Durandetti, M. Devaud, J. Perichon, New J. Chem. 20, 659 (1996).
- 24. Y. H. Budnikova, J. Perichon, D. G. Yakhvarov, Y. M. Kargin, O. G. Sinyashin, Highly reactive σ-organonickel complexes in electrocatalytic processes. J. Organomet. Chem. 630, 185–192 (2001). doi:10.1016/S0022-328X(01)00813-0
- 25. C. Amatore, A. Jutand, Rates and mechanism of biphenyl synthesis catalyzed by electrogenerated coordinatively unsaturated nickel complexes. *Organometallics* 7, 2203–2214 (1988). doi:10.1021/om00100a019
- D. D. Perrin, W. L. F. Armarego, *Purification of Laboratory Chemicals* (Pergamon, Oxford, ed. 3, 1988).

- 27. R. K. Dieter, S. J. Li, Copper cyanide-catalyzed palladium coupling of *N tert* butoxycarbonyl-protected α-lithio amines with aryl iodides or vinyl iodides. *J. Org. Chem.* 62, 7726–7735 (1997). doi:10.1021/j0970985b
- 28. K. R. Campos, A. Klapars, J. H. Waldman, P. G. Dormer, C.-Y. Chen, Enantioselective, palladium-catalyzed alpha-arylation of N-Boc-pyrrolidine. J. Am. Chem. Soc. 128, 3538–3539 (2006). doi:10.1021/ja0605265 Medline
- 29. F. Chen, Z. Ding, J. Qin, T. Wang, Y. He, Q.-H. Fan, Highly effective asymmetric hydrogenation of cyclic N-alkyl imines with chiral cationic Ru-MsDPEN catalysts. *Org. Lett.* **13**, 4348–4351 (2011). <u>doi:10.1021/ol201679f Medline</u>
- T. K. Beng, R. E. Gawley, Application of catalytic dynamic resolution of N-Boc-2lithiopiperidine to the asymmetric synthesis of 2-aryl and 2-vinyl piperidines. *Org. Lett.* 13, 394–397 (2011). doi:10.1021/ol102682r Medline
- D. Liu, C. Liu, H. Li, A. Lei, Direct Functionalization of Tetrahydrofuran and 1,4-Dioxane: Nickel-Catalyzed Oxidative C(sp<sup>3</sup>)–H Arylation. *Angew. Chem. Int. Ed.* 52, 4453–4456 (2013). doi:10.1002/anie.201300459
- 32. D. Srimani, A. Bej, A. Sarkar, Palladium nanoparticle catalyzed Hiyama coupling reaction of benzyl halides. J. Org. Chem. 75, 4296–4299 (2010). <u>doi:10.1021/jo1003373 Medline</u>
- 33. S. Sueki, Y. Kuninobu, Copper-catalyzed N- and O-alkylation of amines and phenols using alkylborane reagents. Org. Lett. 15, 1544–1547 (2013). doi:10.1021/ol400323z Medline
- 34. E. Tayama, M. Ishikawa, H. Iwamoto, E. Hasegawa, Copper(II)–acid co-catalyzed intermolecular substitution of electron-rich aromatics with diazoesters. *Tetrahedron Lett.* 53, 5159–5161 (2012). doi:10.1016/j.tetlet.2012.07.070