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ABSTRACT: Alcohols and carboxylic acids are among the most commercially abundant, synthetically versatile, and operationally
convenient functional groups in organic chemistry. Under visible light photoredox catalysis, these native synthetic handles readily
undergo radical activation, and the resulting open-shell intermediates can subsequently participate in transition metal catalysis. In
this report, we describe the C(sp3)−C(sp3) cross-coupling of alcohols and carboxylic acids through the dual combination of N-
heterocyclic carbene (NHC)-mediated deoxygenation and hypervalent iodine-mediated decarboxylation. This mild and practical Ni-
catalyzed radical-coupling protocol was employed to prepare a wide array of alkyl−alkyl cross-coupled products, including highly
congested quaternary carbon centers from the corresponding tertiary alcohols or tertiary carboxylic acids. We demonstrate the
synthetic applications of this methodology to alcohol C1-alkylation and formal homologation, as well as to the late-stage
functionalization of drugs, natural products, and biomolecules.

Alcohols and carboxylic acids are ubiquitous, native
functional groups with unparalleled structural diversity,

wide-ranging synthetic applicability, and broad representation
among both natural and commercial sources.1,2 These two
structural motifs are most commonly coupled via the venerable
esterification reaction, reported in its first iteration by Fischer
and Speier over 125 years ago.3 The widespread adoption of
this disconnection can be attributed at least in part to the
desirability of alcohols and carboxylic acids as highly abundant
organic fragments. By contrast, the direct coupling of alcohols
and carboxylic acids to forge new C(sp3)−C(sp3) bonds has
remained an appealing yet elusive goal.4 Recently, our group
has harnessed both carboxylic acids and alcohols as alkylating
agents in visible-light-driven processes.5 We questioned
whether these activation modes could be combined in a
unified metallaphotoredox strategy that could achieve the
longstanding goal of alcohol−carboxylic acid C(sp3)−C(sp3)
cross-coupling.6 This technology would leverage the versatility,
stability, and convenience of alcohols and carboxylic acids, thus
offering a modern, orthogonal approach to well-known
esterification protocols.
In recent years, metallaphotoredox catalysis has transformed

organic synthesis by enabling the activation and subsequent
cross-coupling of previously inert alkyl fragments, such as
alcohols, carboxylic acids, and C(sp3)−H bonds.7 In particular,
alkyl carboxylic acids are highly amenable to light-induced
redox activation, participating in a diverse array of trans-
formations, including arylation, alkylation, and amination,
among others.5a,8 In a similar fashion, the radical deoxygenative
functionalization of alcohols has been achieved through a
variety of mechanisms.9−13 These approaches often entail
preactivation of the alcohol substrate, requiring additional
chemical steps and purifications.14,15 Moreover, the homolytic
cleavage event can liberate byproducts that are incompatible
with transition metal catalysis.16 To overcome these challenges,

our group recently disclosed an alternative technology that
leverages an N-heterocyclic carbene (NHC)-based reagent to
achieve the deoxyarylation of an extensive array of complex,
structurally distinct alcohols.5b The NHC reagent reacts with
the alcohol substrate to generate an electron-rich intermediate
that is poised to undergo in situ oxidative fragmentation,
ejecting an alkyl radical that can be subsequently captured by a
metal catalyst.5b

While reports of decarboxylation and deoxygenation have
been described in separate contexts, the main challenge for a
nontraditional C(sp3)−C(sp3) fragment coupling is ensuring
the cross-compatibility of activation modes in combination
with a suitable transition metal catalyst. We sought to merge
NHC-promoted oxidative radical formation with a reductive
strategy for decarboxylation8d to enable a redox-neutral
coupling protocol. However, the proposed transformation
involves transient generation of two alkyl radicals that must be
differentiated in order to achieve efficient cross-coupling.17 As
a design principle, we recognized that the relative instability of
more highly substituted metal−alkyl species should favor
formation of the desired product via catalyst-controlled radical
sorting mechanisms.18 Nickel,19 with its well-established ability
to efficiently capture and stabilize alkyl radicals, was selected to
mediate bond formation. We hypothesized that the nickel
catalyst would preferentially bind and stabilize the less-
substituted alkyl species in the form of a more persistent
metal−alkyl complex,20 directing its cross-coupling with the
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more highly substituted free radical (vide infra). If successful,
the ability to directly couple two of the most abundant and
versatile alkyl sourcesalcohols and carboxylic acidswould
permit broad combinatorial access to sp3-rich products in a
single-step process,21 thereby facilitating a practical synthesis of
aliphatic motifs encompassing an expansive region of chemical
space (Figure 1).22

We envisioned achieving dual nickel/photoredox-catalyzed
cross-coupling of alcohols and carboxylic acids via the design
plan depicted in Figure 2. First, carboxylic acid 1 is premixed
with iodomesitylene diacetate to afford the activated iodonium
dicarboxylate 2, which can be prepared directly on a rotary
evaporator without additional purification.8d,23 The alcohol
substrate 3 condenses with benzoxazolium salt NHC-1 to form
the activated NHC−alcohol adduct (4) under mildly basic
conditions.24 Visible-light excitation of the photocatalyst
[Ir(dF(Me)ppy)2(dtbbpy)]PF6 (5) [dF(Me)ppy = 2-(2,4-
difluorophenyl)-5-(methyl)-pyridinyl; dtbbpy = 4,4′-bis(tert-
butyl)-2,2′-bipyridine] generates a long-lived, oxidizing triplet
excited state (6, τ = 1.2 μs, E1/2

red [*Ir(III)/Ir(II)] = +0.77 V
vs saturated calomel electrode (SCE) in MeCN).25 The
excited state complex 6 can readily undergo reductive
quenching by 4 (in preference to oxidative quenching by 2;
see Figures S8 and S15 for emission quenching studies) via
single-electron transfer (SET) to provide the reduced Ir(II)
photocatalyst 7. Rapid deprotonation of the transient amine
radical cation26 generates a carbon-centered radical adjacent to

three heteroatoms (8). At this stage, subsequent β-scission27,28

(ΔG‡ < 12 kcal/mol by density functional theory; see Table
S17) liberates an aromatized byproduct29 (9) and alkyl radical
10, which can be rapidly trapped by the nickel catalyst 12 to
form Ni−alkyl intermediate 13. Concurrently, reduction of the
preformed iodonium dicarboxylate (2, Epc = −1.00 V vs SCE in
1:1 DMSO/MTBE) by 7 (E1/2

red [Ir(III)/Ir(II)] = −1.25 V vs
SCE in in 1:1 DMSO/MTBE) should afford, upon
fragmentation and CO2 extrusion, the acid-derived radical 11
along with the regenerated Ir(III) photocatalyst (5). Finally,
nickel-catalyzed bond formation30,31 would deliver the desired
C(sp3)−C(sp3) coupled product (14) and reconstitute the
nickel catalyst 12.
Although alternative sequences of radical capture and bond

formation are possible, we postulated that the nickel catalyst
should effectively distinguish between the two radical species
and direct their productive cross-coupling as a combined
consequence of (i) the differing relative stabilities of alkyl
radicals,17 (ii) differences in nickel−carbon bond strengths,20

and (iii) the reversibility of radical capture for hindered alkyl
radicals.32 Literature precedent and preliminary computational
studies suggest that nickel catalyst 12 should preferentially
bind and sequester the less-substituted alkyl radical, 10 (ΔG =
−12.4 kcal/mol by DFT; Figure S23), thereby promoting the
buildup of the more-substituted radical, 11, in solution. Under
steady-state reaction conditions, we postulated that this
“radical sorting” mechanism should favor the accumulation

Figure 1. Cross-coupling of alcohols and carboxylic acids.
Figure 2. Proposed reaction design.
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of species 11 and 13 (over 10 and 15), from which bond
formation would provide the desired cross-coupled product.18

We first explored this idea in the context of the model
deoxymethylation shown in Table 1. Following an extensive
evaluation of reaction conditions (Tables S1−S10), we
ultimately found that the alcohol substrate underwent efficient
in situ condensation with NHC-1 (1.10 equiv) and pyridine
(1.05 equiv) in MTBE (0.10 M), followed by cross-coupling
with iodomesitylene diacetate (2.0 equiv) in the presence of
photocatalyst 5 (1 mol %) and nickel catalyst 12 (10 mol %)30

in MTBE/DMSO (1:1, 0.02 M) to afford the desired product
in excellent yield (Table 1, 76% yield) after 1 h of visible light
irradiation (450 nm) in an integrated photoreactor.33 This
protocol permits the direct in situ activation of alcohol
substrates, representing a highly practical and exceptionally
mild procedure for alkyl cross-couplings. Diminished reaction
performance was observed with related nickel salts, such as
acetylacetonate- or bipyridine-ligated systems (entries 2 and 3,
73% and 24% yield, respectively). While the commercially
available carboxylate precursor MesI(OAc)2 remains optimal
under these conditions, the related reagent, phenyliodine(III)
diacetate (PIDA),34 can be used with minimal reduction in
yield (entry 4, 71% yield). Reduced stoichiometric excess of
the carboxylate is well-tolerated (entry 5, 67% yield) and may
be desirable for structurally complex or high-value coupling
partners. Both the NHC- and iodine(III)-mediated radical
generation pathways are exceptionally facile, and the vast

majority of product formation occurs in a matter of minutes
(entry 6, 67% yield). Control experiments indicate that
iridium, light, and nickel are each essential for optimal
efficiency of product formation (entries 7−11), although
small amounts of cross-coupled product are formed through
background radical coupling in the absence of 12 (entry 8).
With optimized conditions in hand, we set out to explore the

scope of our reaction (Table 2). Using a β-alanine derivative
(16) as the carboxylic acid coupling partner, primary,
secondary, and tertiary alcohols could be successfully cross-
coupled under the reaction conditions.35 Secondary aliphatic
alcohols containing saturated scaffolds of pharmaceutical
relevance were competent substrates in our protocol, affording
alkylated products incorporating pyrrolidine (17, 51% yield),
tetrahydropyran (18, 62% yield), piperidine (19 and 20, 62%
and 63% yield, respectively), dioxane (21, 78% yield), and
azepane (22, 68% yield) motifs.36 Rotationally unconstrained
secondary acyclic substrates could also be successfully utilized
to access the desired products in good yield (23 and 24, 79%
and 73% yield, respectively), and sterically encumbered
polycyclic alcohols such as 2-adamantanol and exo-norborneol
were employed without appreciable decrease in reaction
performance (25 and 26, 47% and 79% yield, respectively).
Significant homocoupling is observed in the cross-coupling of
two primary radicals, as the nickel catalyst is less able to
effectively differentiate between these two active species.
Nonetheless, using 2 equiv of the activated acid component,
primary aliphatic alcohols could be employed to provide
C(sp3)−C(sp3) coupled products in synthetically useful yields,
demonstrating tolerance of functional groups such as primary
alkyl chlorides (27, 50% yield), as well as ethers and protected
amines (28−30, 52−75% yield). Notably, tertiary alcohols
underwent successful deoxygenative alkylation to afford
products with hindered alkyl quaternary carbon centersa
longstanding challenge in the field of alkyl−alkyl cross-
coupling.18,37,38 This protocol was successfully applied to
both cyclic and acyclic tertiary alcohols, including tert-butanol,
illustrating the power of this method to deliver previously
elusive products from readily available starting materials (31−
35, 57−75% yield).
With respect to the carboxylic acid coupling partner, we

selected phenylalanine-derived alcohol substrate 36 to inter-
rogate the performance of a range of primary, secondary, and
tertiary alkyl acids under our reaction conditions. An array of
secondary carbocyclic substrates performed well using this
technology, affording a host of alkyl coupled products. Small
ring systems, such as cyclobutane (37 and 38, 57% and 52%
yield, respectively), cyclopentane (39, 67% yield), pyrrolidine
(40, 42% yield), and tetrahydrofuran (41, 50% yield), were
found to be viable coupling partners, as were larger
cyclohexane (42 and 43, 65% and 69% yield, respectively),
tetrahydrofuran (44, 66% yield), and cycloheptane (45, 66%
yield) scaffolds. Commercially available fluoroalkyl moieties
could be readily incorporated into these cross-coupled
products (38 and 43)an important objective in the synthesis
of medicinal agents where the ability of fluorine to modulate
physicochemical properties is well-recognized.39 Secondary
acyclic carboxylic acids could be subjected to our reaction
conditions, affording alkylated products in good yields (e.g.,
46, 64% yield). A range of acetic and primary carboxylic acids
underwent successful cross-coupling, including substrates with
α-branching and electrophilic groups, such as carboxylate
esters (47−50, 47−67% yield). Of note, tertiary carboxylic

Table 1. Control Reactions of Optimized Conditionsa

entry deviation from above yieldb

1 none 76%
2 Ni(acac)2 instead of 12 73%
3 NiCl2·dtbbpy instead of 12 24%
4 PhI(OAc)2 instead of MesI(OAc)2 71%
5 1 equiv of MesI(OAc)2 67%
6 irradiation for 5 min 67%
7 no Ir catalyst <5%
8 no Ni catalyst 12%
9 no Ir catalyst, no light 0%
10 no Ir catalyst, no Ni catalyst 0%
11 no light, 50 °C 0%

aPerformed with alcohol (0.05 mmol, 1.0 equiv), NHC precursor
(1.10 equiv), pyridine (1.05 equiv), and iodomesitylene dicarboxylate
(2.0 equiv). bYields determined by HPLC analysis with acetanilide as
internal standard. See Supporting Information for experimental
details.
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acids could be effectively utilized for the preparation of fully
C(sp3)-substituted quaternary carbon centers, including those

arising from monocyclic (51 and 52, 61% and 47% yield,
respectively) and polycyclic (53 and 54, 66% and 54% yield,

Table 2. Scope of Metallaphotoredox C(sp3)−C(sp3) Cross-Coupling of Carboxylic Acids and Alcoholsa

aIodonium dicarboxylate formed with MesI(OAc)2 (2 equiv) and carboxylic acid (4 equiv) in toluene (0.05 M) at 55 °C over 10 min. Coupling
performed with alcohol substrate (0.50 mmol, 1.0 equiv), NHC-1 (1.10 equiv), and pyridine (1.05 equiv) in MTBE (0.10 M) for 15 min at room
temperature, then iridium photocatalyst 5 (1.0 mol %), nickel catalyst 12 (10 mol %), and preformed iodomesitylene dicarboxylate (2.0 equiv,
added over 5 min) in MTBE/DMSO (1:1, 0.02 M) with blue LED irradiation for 1 h at 23 °C. Homodimerization of the limiting alcohol substrate
is typically 5−10%. Yields are isolated unless otherwise noted. See SI for experimental details. b1.30 equiv of NHC-1, 1.25 equiv of pyridine. c2.7:1
dr. d8:1 dr. e>20:1 dr. fYield by 1H NMR. gNHC-2 in PhCF3, −20 to 0 °C for 4 h; 2 mol % 5, 20 mol % 12. h1.5 equiv iodomesitylene
dicarboxylate. i1.1:1 dr. j1:1 dr. k>99% ee by HPLC.
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respectively) tertiary acid substrates. The sterically hindered,
planarized tert-butyl radical derived from pivalic acid was
successfully employed to generate the corresponding product
in good yield (55, 58% yield).
To further demonstrate the value of this method, we next

sought to deploy our protocol in the context of deoxygenative
C1-alkylation.

40 Acetic acid derived C1-alkylating reagents
bearing isotopic or heteroatom substituents were successfully
employed to prepare products with deuteromethyl (56, 78%
yield), aminomethyl (57, 52% yield), and aryloxymethyl (58,
63% yield) functionality (Table 3). In addition, using readily
available α-hydroxy acids as highly convenient and versatile
homologation reagents,41 we accessed alcohol homologation
products bearing benzyl (59, 70% yield), acetoxy (60, 58%
yield), and p-methoxybenzyl (61, 59% yield) protecting
groups. Finally, to illustrate the practical advantages of this

technology in the context of late-stage functionalization of
drugs and biomolecules, we subjected complex alcohol and
acid substrates to our reaction conditions. We were excited to
obtain synthetically useful quantities of alkyl coupled products,
demonstrating the applicability of this synthetic technology to
the late-stage derivatization of drugs, natural products, and
biomolecules (Table 4, 62−65, 34−80% yield).
In summary, we introduce here the merger of alcohols and

carboxylic acids via C(sp3)−C(sp3) cross-coupling as an
orthogonal fragment coupling to the traditional esterification
reaction. By combining NHC-mediated deoxygenation with
hypervalent iodine-mediated decarboxylation, we have success-
fully developed a dual nickel/photoredox-catalyzed technology
applicable to a wide range of aliphatic alcohols and carboxylic
acids. We demonstrate the utility of this methodology for
quaternary carbon center synthesis, alcohol homologation, and
late-stage derivatization. Additional studies probing the nature
of the bond formation and its application to new synthetic
contexts are underway and will be reported in due course.
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