Artificial Photosynthesis: a synthetic organic perspective

Wei Liu MacMillan group meeting Mar. 11th, 2020 Photosynthesis: a brief overview

Jack Twilton, MacMillan group meeting, "Photosynthesis – An Organic Chemists Guide"

Outlook

ĊН

CO₂ Conversion Challenge

Challenge Targeted Compounds	Weighting Factor
D-Glucose	100
Other 6-carbon sugars (D-hexoses)	80
5-carbon sugars (D-pentoses)	50
4-carbon sugars (D-tetroses)	10
3-carbon sugars (D-trioses)	5
D-Glycerol	5

Started by NASA in 2019 (now in Phase II)

Space exploration to Mars

CO₂ recycling (life support system)

CO₂ fixation (availabe SM on Mars)

Why NASA wants glucose?

Energy sources for microbial fermentation

C6 sugar is preferred in microbial system

Total synthesis of glucose on Mars? What about earthly synthesis of glucose?

Nature's approach: Calvin-Benson cycle

RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase)

responsible for more than 90% carbon fixation

one of the most abdundant enzyme on earth

low turnover frequency (1 to 10 s⁻¹)

3 to 10 molecules of CO₂ fixed per second per enzyme

low specificity (CO₂ vs O₂)

targets for synthetic biology

Erb, T. J.; Zarzycki, J. *Curr. Opin. Biotech.* **2018**, *49*, 100 Bar-Even, A.; Noor, E.; Lewis, N. E.; Milo, R. *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 8889 Schwander T.; Schada, v. B. L.; Burgener, S.; Cortina, N. S.; Erb, T. J. *Science*, **2016**, *354*, 900 Nature's approach: Calvin-Benson cycle

Mechanism of RuBisCO

Erb, T. J.; Zarzycki, J. Curr. Opin. Biotech. 2018, 49, 100

Nature's approach: Calvin-Benson cycle

Mechanism of RuBisCO

Erb, T. J.; Zarzycki, J. Curr. Opin. Biotech. 2018, 49, 100

Inverse electron demand [4+2] cycloaddition

49% yield (>45:1 endo:exo)

Boger, D. L.; Robarge, K. D. J. Org. Chem. 1988, 53, 5793

NASA's approach

NASA CELSS Program FINAL REPORT Grant No. NCC 2-231

FEASIBILITY OF PRODUCING A RANGE OF FOOD PRODUCTS FROM A LIMITED RANGE OF UNDIFFERENTIATED MAJOR FOOD COMPONENTS

Principal Investigator:

Dr. Marcus Karel Professor of Food Engineering

Research Associate:

Dr. Ahmad Reza Kamarei

Department of Nutrition and Food Science Massachusetts Institute of Technology Cambridge, Massachusetts 02139

NASA Technical Officer:

Dr. Robert D. MacElroy Advanced Life Support Office, 239-E NASA-Ames Research Center Moffett Field, California 94035

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850008164.pdf

NASA's approach

One approach which has been investigated by NASA as well as other investigators is the conversion of formaldehyde to "formose" sugars. Hydrogenolysis of "formose" produces glycerol, 1,3-propanediol, and 1,4-butanediol which are believed to be at least partially utilizable as energy sources and which can be produced also by other synthetic routes (Shapira, 1968; Shapira, 1970B; Weiss and Shapira, 1971). The formaldehyde is assumed to be attainable with suitable energy input by catalytic conversion, from CO₂ and H₂O as follows:

$$4H_2O \rightarrow 4H_2 + 2O_2$$

 $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$
 $O_2 + CH_4 \rightarrow HCHO + H_2O$

- 48 -

Recently, researchers at MIT have accomplished the total synthesis of all 8 L-hexoses, using a reiterative two-carbon extension cycle consisting of four steps (Ko et al., 1983). Should such procedures produce D-hexoses and prove amenable to utilization under CELSS conditions, they may offer a new approach to synthesis of nutrients.

page 49

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850008164.pdf

Formose reaction

a mixture of sugars: "formose sugar"

Discovered by Aleksandr Butlerow in 1861

Considered by NASA as a way to synthesize glycerol

Now accepted mechanism proposed by Breslow in 1959

Autocatalytic: long induction period, followed by fast reaction

Addition of intermediates removes induction, but doesn't increase rate

Butlerow, A. Justus Liebigs Annalen der Chemie, **1861**, *120*, 295 Breslow, R. Tetrahedron Lett. **1959**, *21*, 22

Autocatalytic cycle

Breslow, R. Tetrahedron Lett. 1959, 21, 22

Product-forming pathway

Breslow, R. Tetrahedron Lett. 1959, 21, 22

Formose reaction

The reality

HO.

ŎН

HO

 \sim_0

,OH

OH

ŎН

and all the diastereomers...

Decker, P.; Schweer, H.; Pohlmann, R. J. Chromatogr. A 1982, 244, 281

Fig. 1. Gas chromatogram of *n*-butoxime trifluoroacetyl derivatives of carbohydrates arising in the condensation of formaldehyde. Temperatures: column, 100°C for 2 min, then increased from 100 to 180°C at 5°C/min, final temperature 180°C; injection and detector, 250°C. Gas flow-rates: nitrogen carrier gas, 2 ml/min; hydrogen, 20 ml/min; air, 200 ml/min. Sample volume: 1 μ l. Splitting ratio: 1:12. Peak identities: see Table I(A).

"the formose product can be regarded as a carbohydrate analog of petroleum, in that it contains so many carbohydrates of varying molecular weight and isomeric structure" (Weiss et al., 1970)

Decker, P.; Schweer, H.; Pohlmann, R. J. Chromatogr. A 1982, 244, 281

Ricardo, A.; Carrigan, M. A.; Olcott, A. N. Benner, S. A. *Science* 2004, *303*, 196
Lambert, J. B.; Gurusamy-Thangavelu, S. A.; Ma, K. *Science* 2010, *327*, 984
Matsumoto, T.; Yamamoto, H.; Inoue, S. *J. Am. Chem. Soc.* 1984, *106*, 4829

Ricardo, A.; Carrigan, M. A.; Olcott, A. N. Benner, S. A. Science 2004, 303, 196

Lambert, J. B.; Gurusamy-Thangavelu, S. A.; Ma, K. Science 2010, 327, 984

Matsumoto, T.; Yamamoto, H.; Inoue, S. J. Am. Chem. Soc. 1984, 106, 4829

Matsumoto, T.; Yamamoto, H.; Inoue, S. J. Am. Chem. Soc. 1984, 106, 4829

Matsumoto, T.; Yamamoto, H.; Inoue, S. J. Am. Chem. Soc. 1984, 106, 4829