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ABSTRACT: Here we report the design of a general, redox-switchable organophosphorus alkyl radical trap that enables the
synthesis of a broad range of C(sp3)−P(V) modalities. This “plug-and-play” approach relies upon in situ activation of alcohols and
O�P(R2)H motifs, two broadly available and inexpensive sources of molecular complexity. The mild, photocatalytic deoxygenative
strategy described herein allows for the direct conversion of sugars, nucleosides, and complex pharmaceutical architectures to their
organophosphorus analogs. This includes the facile incorporation of medicinally relevant phosphonate ester prodrugs.

Phosphorus functionalities play an important role in
regulating a wide range of cellular processes, including

protein signaling cascades,1 inflammation,2 cellular metabo-
lism,3 and gene expression.4−7 As such, organophosphorus
species are widely represented in pharmaceuticals,8 agro-
chemicals,9 and modern materials.10 These predominantly
P(V) motifs come in a wide variety, ranging from organic
phosphates (O�P(OR)3) to phosphine oxides (O�PR3).
While access to aryl C−P(V) species is well-established
through methods utilizing Pd catalysis,11 aryl iodonium
salts,12,13 and photoredox catalysis,14 methods for the
formation of the corresponding alkyl C−P(V) species are
underdeveloped. There is, however, demand for structurally
complex P(V) species, exemplified particularly by the
phosphorus prodrug motifs found in recent nucleoside-derived
antivirals.15−19

Traditional two-electron methods20 for the synthesis of alkyl
organophosphorus species, such as the Arbuzov reaction,21

have historically provided access to this chemical space.
However, given the use of activated electrophiles and SN2
mechanism, these methods often struggle to provide access to
highly functionalized or hindered P(V) species.22 Other
methods are constrained by the requirement of reactive
organometallics or feature limited scopes given the prerequisite
of a π system for hydrophosphonylation. Recognizing the lack
of robust synthetic methods for the construction of alkyl C−
P(V) groups, we sought to develop a modular approach to directly
convert alcohols to their C−P(V) congeners via radical processes.
If successful, this method would (1) broadly expand access to
organophosphorus chemical space through the use of abundant
feedstock chemicals23 and (2) serve as a powerful technology
for the efficient synthesis of unnatural nucleotides from sugars
and nucleosides (Figure 1).

In recent years, methods that use open-shell intermediates
(1) to forge X−P bonds (X = O, S, C(sp2)) via radical addition
to P(III) (2) have found great utility.14,24−28 These trans-
formations proceed through a well-characterized P(IV)
phosphoranyl radical intermediate (3),29 which readily under-

goes β-scission to generate alkyl radical (5) and the desired
P(V) product (4). However, attempts to extend this
transformation to more stable alkyl radical species have been
unsuccessful, despite the fact that the key alkyl phosphoranyl
radical intermediate (3) can be detected at appreciable
concentrations by electron paramagnetic resonance (EPR)
spectroscopy30 and the net transformation is significantly
exothermic (ΔG ≈ −40 kcal/mol).31 Interestingly, instead of
achieving product formation via β-scission, the P(IV)
intermediate decomposes through α-scission, regenerating
the starting phosphite and alkyl radical. As a result of this
mechanistic limitation, no general method for the construction
of C(sp3)−P(V) species via phosphoranyl radical fragmenta-
tion has been described in the literature.32 Alternative free
radical methods have emerged, including addition of
phosphorus-centered radicals to π systems,33,34 carbocation
formation by radical polar crossover (RPC) followed by SN1
trapping,35,36 and transition-metal-catalyzed cross-coupling
methods.37,38 Although these transformations represent
significant inroads toward the formation of C(sp3)−P(V)
species, we hypothesized that the development of a general
P(III) alkyl radical trap and subsequent merger with
photoredox conditions would enable access to a novel
organophosphorus chemical space.

Specifically, we viewed this problem through the lens of the
Curtin−Hammett principle, wherein the alkyl radical is
terminated through one of two irreversible pathways, namely,
(a) undesirable decomposition via either hydrogen atom
transfer or disproportionation or (b) β-scission to form the
desired phosphonate. Connecting these pathways is a rapid
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equilibration between the free alkyl radical/P(III) pair (1 and
2) and the phosphoranyl radical (3). We sought to modulate
the relative rate of β-scission with the goal of favoring the
desired C(sp3)−P(V) formation. Specifically, we envisioned
utilizing an activated P(III) species (7), generated in situ from
6, that would be equipped with a suitable radical leaving group
(LG) through a weakened C−O bond.30 Upon reversible
radical capture, expedited β-scission would enable an
irreversible trapping event via loss of 8, thereby delivering
phosphonate (9).

These phosphonates are often found within antiviral
therapeutics,39 particularly those that target polymerase-
mediated viral replication.40 Their hydrolytic stability and
increased membrane permeability can improve pharmacoki-

netic profiles41−43 and may lower dosing requirements.44,45

The potential of this method to directly interconvert the
natural site of phosphorylation in sugars and nucleosides to the
phosphonate derivative further motivated us to enable alcohols
as the radical precursor (Figure 1).46−51

To realize the transformation, we utilized two in situ
preactivation steps on readily available starting materials
(Figure 2). This modular approach would ideally enable a
“plug-and-play” strategy to access many classes of C(sp3)−
P(V) modalities. First, the alkyl radical progenitor (10)
undergoes rapid (∼30 min), mild condensation with the
deoxazole (11, NHC) to furnish the activated alcohol adduct
(12).46 Simultaneously, in a separate vial, an unsymmetrical
P(III) reagent (15), bearing the radical leaving group, is
prepared from broadly available and inexpensive O�P(R)2H
precursor (13) and a benzhydrol derivative (14).52 This crude
mixture is then directly added to the vial containing the
activated alcohol, photocatalyst, and base. Upon irradiation
with 450 nm light, the iridium photocatalyst’s long-lived triplet
state is reached.53,54 This highly oxidizing state enables facile
oxidation of 12 (E1/2

ox ≈ 1.0 V vs SCE in MeCN), and
subsequent deprotonation furnishes the heterocyclic radical
(16).46 This species generates an alkyl radical (17) and the
inert, rearomatized NHC byproduct through β-scission. Next,
a phosphoranyl radical (18) is formed via the reversible
addition of 17 to the activated P(III) species; a subsequent
irreversible β-scission driven by the weak C−O bond leads to
the formation of the deoxyphosphonylated product (19) and a
bisbenzylic radical (20). Finally, the photocatalytic cycle is
closed through reductive RPC (E1/2

red ≈ −0.77 V vs SCE in
MeCN),55 furnishing a carbanion (21). Importantly, our
choice of an alkyl radical precursor serves as a key design
element. P(III) motifs like phosphites, phosphonites, and
phosphinites are oxidatively labile (E1/2

ox = 1.83, 1.49 and 1.28 V
vs Ag/Ag+ in MeCN, respectively).56 Therefore, many
commonly employed, oxidatively activated alkyl radical
precursors, such as BF3K salts (E1/2

ox = 1.5 V vs SCE),32 may
result in competitive, deleterious single electron transfer (SET)
from P(III). By utilizing the easily oxidized NHC-activated
alcohols as an alkyl radical source, we envisioned a broad
tolerance of these activated P(III) radical traps, enabling the
construction of a diverse array of C(sp3)−P(V) modalities.
With this design in mind, we set out to enable the one-step
deoxyphosphonylation of alcohols.

Following an extensive optimization campaign (Tables S1−
S5), we developed conditions to transform Boc-protected L-
phenylalaninol to the corresponding diethyl phosphonate in
75% yield (Table 1, entry 1). As expected, no product was
detected in the absence of light or photocatalyst (entries 2 and
3). The benzhydrol also proved to be necessary for
phosphonylation (entry 4), providing insight into the
importance of a suitable radical leaving group. Moreover,
when unactivated sources of P(III) or P(V) were utilized, no
product was detected (entry 5); this finding confirms previous
reports on the unproductive reactivity of standard P(III/V)
species with alkyl radicals.29 Finally, the organic photocatalyst
4CzIPN-tBu performed comparably with the optimal iridium
photocatalyst (entry 6).

With the optimized conditions in hand, we next evaluated
the scope of the transformation (Figure 3). Reduced amino
acids (22) and serine (23) proved to be competent substrates,
furnishing medicinally relevant β-aminophosphonates57 in
good yields (90% and 67%) from readily accessible precursors.

Figure 1. Design of a general P(III) radical trap.
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Additionally, (hetero)aromatic motifs (24 and 25) and
saturated heterocycles (26) were well-tolerated (70−76%
yield). We were pleased to find that primary chlorides were
tolerated despite the strongly basic reaction conditions (27,
81% yield). Additionally, medicinally relevant bisphosphonates
could be synthesized (28, 67% yield).58 A complex alcohol
bearing an N-heterocycle and an easily oxidizable anilinic
functionality could also be phosphonylated (29, 75% yield).
We next subjected a range of saturated N-heterocycles
appended with secondary alcohols to the phosphonylation
conditions, obtaining products with good to excellent

efficiencies (30−33, 71−94% yield). Threonine furnished the
secondary β-amino phosphonate derivative in fair yield (34,
43% yield).

Additionally, spirocyclic, bicyclic, and complex N-hetero-
cyclic alcohols were found to be competent substrates (35−37,
46−84% yield). Gratifyingly, this transformation could be
performed on a gram scale with equal efficiency (22 and 29,
94% and 78% yield).

Finally, this method was applied to a series of 3° alcohols.
EPR and synthetic studies32 have shown that classical tertiary
radicals generally do not undergo addition to P(III) species.

Figure 2. Proposed mechanism. Deoxazole Ar = p-CF3Ph.

Table 1. Optimized Conditions and Controls

entry deviation assay yield (%)

1 none 75
2 no light 0
3 no photocatalyst <1
4 no leaving group <1
5 P(OEt)3 or O�P(OEt)2H instead of activated P(III) 0
6 4CzIPN-tBu (2 mol %) instead of Ir 74
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Figure 3. Alcohol and phosphorus scope. See Table 1 for the conditions and the Supporting Information for details and additional examples. aAssay
yield. b2:1 to 1:1 dr. cFrom cubane RAE.
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This phenomenon was successfully recapitulated, as tert-
butanol gave no detectable product (38, 0% yield). However,
when the 3° radical is tied back through a small ring or bicyclic
system, its s character is increased, resulting in the formation of
a stronger C−P bond and reducing the steric penalty for P(IV)
formation.59,60 Indeed, 3° alcohols of this nature were
converted to the desired products in good to synthetically
useful yields (39−41, 30−72% yield). Although reduced
efficiency is observed with some of these more challenging
systems, we note that tertiary substrates cannot be
accommodated by other recent phosphonylation methods,
including copper-catalyzed37 or metallaphotoredox-based38

methods, highlighting a distinct advantage of a free radical
trap approach. Excitingly, this platform could be generalized to
other radical precursors (redox active esters (RAEs); see
Figure S2) when the requisite alcohol is not readily accessible.
By simply altering the benzhydrol utilized in the phosphite
activation to employ an oxidative RPC (E1/2

ox = 0.35 V vs SCE
in MeCN),61 a redox-neutral cycle generated cubane
phosphonate from the RAE (42, 52% yield).

We next set out to explore the range of phosphorus
functionalities that could be installed through this protocol, by
first examining the effect of phosphite sterics: while linear and
2° phosphite esters proved to be facile substrates (43−45, 62−
78% yield), tert-butyl esters were not amenable to our
preactivation conditions (46, 0% yield). Gratifyingly, 1°
phosphonites and 2° phosphine oxides can be transformed
to 2° phosphonites and 3° phosphine oxides (47−49, 52−58%
yield), highlighting the modular nature of this chemistry.

Additionally, organosulfur derivatives of phosphonates, phos-
phonites, and phosphine oxides could be accessed using a
thiobenzhydrol leaving group (50−52, 63−81% yield). Finally,
we turned our attention to P(V) prodrugs. Typically, these
motifs are synthesized through laborious multistep sequences,
often relying on forcing conditions (strong acid/base or
elevated temperatures).62 Under our protocol, we were pleased
to find that the established S-acylthioalkyl ester (SATE)63

phosphonate prodrug could be installed in a single step (53,
75% yield), obviating the need for a lengthy synthetic
sequence.

We next sought to test the limits of functional group
tolerance by phosphonylating a small library of sugars,
nucleosides, and pharmaceuticals (Figure 4). Gratifyingly,
pyranoses, ribose, and an unnatural sugar derivative were
successfully converted to the hydrolytically stable congeners at
the natural site of phosphorylation (54−57, 67−89% yield).
Furthermore, the steroid abiraterone (58, 40% yield) bearing a
heterostyrenyl motif was phosphonylated in modest yields.
Pharmaceutical scaffolds, including indomethacin (59, 23%
yield) and nateglinide analogs (60, 89% yield), were tolerated,
illustrating the successful application of this chemistry for the
modification of small-molecule drugs. Next, we targeted the
direct modification of nucleosides and analogs thereof.
Deoxyuridine (61, 42% yield) could be directly transformed
into an unnatural nucleotide featuring an alternative site of
P(V) introduction. Excitingly, the nucleoside analogue
ticagrelor (62, 81% yield) could be functionalized in excellent
yield despite the presence of oxidizable functionalities

Figure 4. Phosphonylation of complex molecules. See Table 1 for the conditions and the Supporting Information for details. aAssay yield. b1.4:1 dr.
c>20:1 dr.
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(thioether and free aniline). Finally, the antiviral sofosbuvir
was targeted for phosphonylation. This therapeutic features a
phosphate (O−P(V)) prodrug at the 5′ position.18 Beginning
with the same nucleoside diol precursor used to make the final
nucleotide, we were able to selectively activate the less
sterically hindered 5′ position in the presence of the more
hindered 3′ hydroxyl group.50 Subsequent phosphonylation
formed the 5′-C−P(V) analogue in a modest yet synthetically
useful yield (63, 37%). This late-stage functionalization
protocol offers new opportunities to explore expanded
chemical space for nucleoside-derived therapies.

In summary, we describe herein a modular platform for the
deoxyphosphonylation of alcohols. The combination of mild,
photocatalytic conditions, broad alkyl substrate tolerance, and
the “plug-and-play” nature of activated P(III) generation
enables the formation of a diverse array of alkyl−P(V) species.
This platform provides the means to diversify the synthesis of
medicinally relevant phosphonate esters by direct installation
of the desired P(V) motifs. Importantly, this dehydroxylation
approach gives access to an expansive feedstock of radical
precursors, while the complexity of the phosphites utilized can
furnish valuable prodrug motifs in a single synthetic step.
Furthermore, we envision that adoption of this redox-
switchable benzhydrol-activated P(III) species will broadly
inform the development of related transformations enabled by
phosphoranyl radical chemistry.
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