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ABSTRACT: Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds
via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp*)-coupling partners could
provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of
versatile C(sp®)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies
invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the
cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis.
Herein, we report the first C(sp>)—C(sp®) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative
hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-
selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the

rapid construction of complex aliphatic frameworks.

Within organic synthesis, cross-coupling technologies have
profoundly streamlined the preparation of complex,
high-value molecules across numerous chemical industries.'
Notably, metallaphotoredox cross-coupling harnesses reactive
radical intermediates under mild, transition-metal-mediated
bond-forming conditions.” By enabling open-shell functionali-
zation of abundant feedstocks, such as amines, carboxylic acids,
and C—H nucleophiles, metallaphotoredox catalysis allows
fragment couplings that would be unachievable via traditional
two-electron pathways.” ® These transformations are partic-
ularly suited for delivering C(sp*)-rich scaffolds, molecular cores
increasingly recognized as vital components of clinically
successful small molecule drug candidates (Figure 1a).”®
Novel metallaphotoredox methods, particularly those employ-
ing new aliphatic partners and allowing previously untenable
retrosynthetic disconnections, have the potential to provide
access to unexplored, medicinally relevant chemical space.’

To this end, a central goal in metallaphotoredox has been the
incorporation of underutilized yet advantageous C(sp®)-radical
progenitors within open-shell cross-coupling systems.” Among
many possibilities, our laboratory recently identified olefins as a
nontraditional motif that might be activated for metal-
laphotoredox fragment couplings. Alkenes, which are naturally
occurring or readily accessible from ubiquitous precursors (e.g.,
halides, alcohols, carbonyls),m represent a structurally varied,
bench-stable substrate class that is highly commercially available
compared to traditional electrophilic and organometallic
reagents (Figure 1b)."" However, beyond their deployment as
“conjunctive” linchpins for specific multicomponent reactions,
olefins have seen limited consideration as partners for directin.
group-free, C(sp®)-enriching metallaphotoredox couplings.'>"*
If simpler alkene-to-C(sp®)-radical activation modes (primarily
those more reminiscent of “conventional” cross-coupling
logic)'* could be employed in metallaphotoredox, pharmaceuti-
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cally valuable linkages such as C—C bonds could be delivered
through predictable and expedient synthetic routes. Moreover,
by pairing olefins with other photoredox-compatible feedstock
substrates, a range of convenient but otherwise inaccessible
C(sp*)—C(sp®) fragment couplings may be realized under mild
conditions.” Specifically, an alkene might be induced to undergo
metallaphotoredox cross-coupling with a transient radical
species derived from an alcohol substrate. To this end, we
have developed an N-heterocyclic carbene (NHC)-mediated
alcohol deoxygenation platform that can be harnessed for the
direct C(sp*)—C(sp®) coupling of alcohols with acid or halide
partners."*>'>'® In light of the structural variance and
commercial abundance of alcohols,'’ we expect that a direct
alcohol—alkene cross-coupling could permit single-step explora-
tion of vast aliphatic chemical diversity.

Given that olefin 7-systems can furnish sp>-based radical
intermediates through various open-shell pathways, it was
necessary to devise an appropriate alkene-to-radical activation
strategy at the outset. Metal-hydride hydrogen atom transfer
(MHAT) is capable of generating radicals via simple C—H
bond-forming events and thus represents a chemoselective and
retrosynthetically appealing approach to Markovnikov-selective
radical production from unactivated olefins.'” Using sustainable
metals—such as Co, Fe, and Mn—MHAT hydrofunctionaliza-
tion catalysis has enabled Mukaiyama hydrations, Giese
additions, azidations, aminations, and even olefin-based cross-
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A. Building C(sp®) quaternary carbons from C(sp?) functionality

C. Radical sorting enables previously elusive cross-couplings

A " advantages in: (/v[/ MHAT (j/\
; e —_— S - .
Vs y Xradlcal Me
« complexit
(Y Clp) csp?) (\/T/\ " b "
N i i * solubilit;
Cbz increasing oz Y H,H y  metallaphotoredox H /sorﬁng N
three-dimensionality + clinical success Y H —H z
OH deoxygenation
B. Abundance and diversity of potential alkyl fragments D. This work: cross-coupling of alkenes and alcohols
Ho-aKk 2 R
NHCbz
relative commercial availability HOZC’AIK
Me
H
traditional partners
for cross-coupling u (hydro)methylation + alkylation m > 40 examples m up to 89% yield
moving towards
PinB—Alk |—Alk . . .
native functionality : .
NHC ( Ir J{ Ni (Mn]| Si ‘ ’
Figure 1. Metallaphotoredox olefin-alcohol cross-coupling.
Hh\/ H Ph\N _ H,. New metallaphotoredox strategy: Mn MHAT
- + VA
OH O_ﬂ"ol - H XIl
alcohol (1) il vii L Mnm_H
. R3Si—X
| 3
NHC-1 | —H* 1 NiT=Lp olefin partner
MHAT
Ph Ph /\ Manganese RySi—
\
H. N—-- JN— -~ radical sorting Catalvtic
> I o— I v X
Me—0~ Jo=-. we SO0~ and Sp2 H Cycle
an v Xvi o)
+ .
-H (Nu”'L,, X L,,Mn"—X L,Mn"—x
- \ > <
*Ir (1v) I (v)
oxidant reductant [Oredl®™
Photoredox Me e
Catalytic H
Radical sorting catalysis
Cycle | — [O] (0] XVl
SET
O = P4 \ C(sp?®)-C(sp?) product new approach to cross-couple
*—
[Ored] new quaternary center olefins with unactivated radicals
A [IN{ID) )
blue light photocatalyst generated via photoredox
source

Figure 2. Plausible mechanism for olefin-alcohol cross-coupling.

couplings under thermal activation.'®'? Drawing from these
precedents, we proposed achieving the envisioned alkene—
alcohol cross-coupling by merging MHAT-based alkene
activation with NHC-mediated alcohol deoxygenation (Figure
1c)."> However, the success of such a method would require
hindered secondary and tertiary radicals, accessed via MHAT
from common olefin substitution patterns, to undergo facile
bond formation with alcohol-derived unstabilized radicals.
Despite numerous advances in MHAT reactivity,'” this specific
type of dual radical cross-coupling has remained under-
developed,” consistent with energetic challenges for inner-
sphere reductive elimination at metal centers when using
hindered radical partners.”"**

To achieve selective open-shell cross-coupling of alcohols and
olefins (Figure 1d), we sought to leverage “radical sorting”
catalysis, which has been recently deployed in our laboratory and
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others.”*>*372° Under this biomimetic strategy, two carbon-
centered radicals with differing substitution patterns are
thermodynamically distinguished by a high-valent metal
catalyst, wherein the less substituted methyl or primary radicals
are preferentially captured by the metal center.”*” The
remaining transient nucleophilic (often tertiary) radicals can
engage in outer-sphere bond-forming processes with the nascent
and persistent electrophilic metal—alkyl intermediate.***’
Following bimolecular homolytic substitution (Sy2) princi-
ples,” these events readily furnish congested motifs, including
quaternary centers, while achieving cross-selectivity via “radical
sorting” as dictated by metal-binding favorability and Sy2
kinetics.”> While related Fe mediated MHAT couplings are
known in thermal contexts,” our success in pairing unstabilized
radicals via Ni(scorpionate),’ 32 Ni(diketonate),"" and Fe-
in)'*"** sorting platforms suggested that metallapho-
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toredox could be remarkably adaptable to radical sorting with
olefins and alcohols. Importantly, the synergistic use of
photoredox, MHAT, and radical sorting strategies would
mandate careful, coordinated optimization of each catalytic
cycle, a requirement made less burdensome by the plethora of
sorting catalysts available within metallaphotoredox set-
tings.”**~>° Herein, we report a successful platform for olefin-
alcohol coupling—formally a “deoxygenative hydroalkyla-
tion”—Dbased on this mechanistic blueprint that expediently
delivers C(sp®)-complexity through the coordinated action of
Ir/Mn/Ni triple cocatalysis under photonic activation.

Figure 2 details a plausible olefin—alcohol cross-coupling
mechanism that merges (a) NHC-mediated alcohol activation,
(b) MHAT-based olefin activation, and (c) radical sorting for
heteroselective bond formation. Prior to irradiation, an alcohol
substrate (i.e,, methanol, I) first condenses with a benzox-
azolium salt (termed “NHC-1”) to form activated NHC—
alcohol adduct IL"® Subsequently, excitation and intersystem
crossing of a suitable Ir(III) photocatalyst (III) under blue light
irradiation could generate a long-lived and oxidizing triplet
excited state IV.*® As established previously,"> adduct II can
initiate reductive quenching with IV via single-electron transfer
(SET), which provides reduced Ir(Il) photocatalyst V and, after
deprotonation, carbon-centered radical VI. Critically, this
unique intermediate undergoes facile S-scission and liberation
of both a stable carbamate byproduct (VII) and the desired
methyl radical (VIII). Concurrently, transmetalation between
Mn(III) MHAT (pre)catalyst IX and hydrosilane reagent X
affords Mn—H intermediate XL.'” Ensuing MHAT between XI
and olefin XII would furnish tertiary radical XIII and the Mn(1I)
intermediate XIV. With reduced forms of the photocatalyst and
MHAT catalyst now present, we anticipated that mild
exogenous oxidants could promote SET events that regenerate
both ground-state Ir(III) photocatalyst III and starting MHAT
catalyst IX.*>* Lastly, in the crucial coupling event between
radicals VIII and XIII, Ni(I) sorting catalyst XV would
preferentially capture the less substituted methyl radical, thereby
delivering persistent Ni(III)—methyl species XVI. Free tertiary
radical XIII could then undergo Sy2 displacement with complex
XVI,*~* affording C(sp*)—C(sp*) cross-coupled product XVII
while regenerating Ni catalyst XV.”"

Recognizing the importance of the “magic methyl effect” in
pharmaceutical design, we first evaluated our proposed olefin—
alcohol coupling for deoxygenative hydromethylation using
alkene 1 and methanol as a widely available yet nontraditional
methylating agent (Table 1; see Supporting Information (SI) for
details).”” Delightfully, quaternary product 2 was obtained in
75% yield using Ir[dF(CF;)ppyl,(dtbbpy)PE, (3; 7 = 2.3 us;
E; /1] = 4121 V vs SCE in MeCN)*® as a
photocatalyst under standardized 450 nm Integrated Photo-
reactor (IPR) irradiation (entry 1).>* These optimal conditions
also featured hydrosilane reagent 1,1,3,3-tetramethyldisiloxane
(TMDS), benzoyl peroxide as a mild oxidant, Mn(dpm), (4,
dpm = dipivaloylmethane) for MHAT activation, and Ni-
scorpionate catalyst 5 (formed in situ from Ni(acac), and
trispyrazolylborate ligand KTp*)** for radical sorting (Figure
2), alongside beneficial base and water additives (entries 2 and
3).>* As outlined in Table 1, judicious catalyst selection proved
essential for reactivity.”'” For the radical sorting step, product 2
was obtained in minimal yield using Fe-based catalysts'****** or
in the absence of sorting conditions (entries 4 and S). By
contrast, diketone- and KTp*-ligated Ni complexes—which are
known to promote radical sorting reactivity—were each

Table 1. Optimization and Control Reactions”

NHC-1 (3.3 equiv), pyridine (3.15 equiv), H
q OH MTBE (0.5 M), t, 20 min; then: Me
CbzN \‘)\
H H H 3 (0.25 mol%), 4 (20 mol%), 5 (10 mol%) CbzN

1 TMDS (5 equiv), Bz,0, (4 equiv), KOAc, H,0

0.05mmol 3 equiv. ~ MTBE/DMA (0.067 M), IPR (450 nm), 2 h 2 - 75% yield

entry deviation yield”
1 none 75%
2 in absence of base (KOAc) 65%
3 in absence of H,O additive 65%
4 Fe(OEP)Cl instead of § 2%
S no Ni catalyst § 10%
6 Ni(acac), instead of § 67%
7 Fe(acac); instead of 4 9%
8 Co(acac), or Co(salen) instead of 4 4%
9 no Mn catalyst 4 0%
10 no light 5%
11 no photocatalyst 3 19%
12 no TMDS 0%
13 no oxidant 0%

“Typically performed with 0.5 equiv. KOAc, S equiv. H,O and 4:1
MTBE/DMA. See SI for experimental details. bYield determined by
'H NMR. Ac, acetyl; Acac, acetylacetonate; Bz, benzoyl; Cbz,
benzyloxycarbonyl; DMA, N,N-dimethylacetamide; MTBE, methyl
tert-butyl ether; OEP, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-por-
phine.

standard reagents and catalysts

effective in some capacity (entry 6).15b’24 Moreover, Mn-
catalyzed olefin activation emerged as a privileged option over
Fe—H, Co—H, and MHAT-free systems (entries 7—9)."” When
considering the various Mn, Fe and Co complexes suitable for
MHAT, different catalysts may show distinct thermodynamic
capacities to compete with Ni for methyl radical capture,®
behavior consistent with open-shell formation of metal—alkyl
intermediates in previous MHAT systems.’® Beyond differences
in redox potentials, we hypothesize that the chosen Mn catalyst
effectively avoids radical capture and off-cycle Mn—methyl
formation, instead favoring productive Mn(I1II)—H activity.'”**
These unique advantages of synergistic Ir/Mn/Ni triple catalysis
for olefin activation and radical sorting are an emerging topic
that will be addressed in subsequent studies.”’ Lastly, additional
control reactions demonstrated that blue light, photocatalyst,
hydrosilane, and oxidant were required for sufficient reactivity
(entries 10—13), consistent with the metallaphotoredox-MHAT
mechanistic blueprint outlined in Figure 2.°"**

https://doi.org/10.1021/jacs.4c02316
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Table 2. Alkene Scope for Methanol-Enabled Hydromethylation”
Me compatible with various
OH = idi » in:
)\ Yj NHC-1, pyridine, MTBE, rt, 30-45 min; H/\l(j substitution patterns
HH H X

X ir YONi Y(vin TMDS, Bz,0,,

MTBE/DMA, rt, 2 h

KOAc, H,0 additional examples as

hydromethylated extended scope in S|

methanol alkene product
terminal alkenes
oMo Me . | cN O Me H
M Me M
H\)e\/NHB \/Nlle\/©/ H o Me H\)\/NTN NJ_/
0C
H OH o
[}

6, 60% yield 7, 64% yield 8, 61% yield” 9, 54% yield 10, 42% yield

di- and trisubstituted alkenes — quaternary products

Me
Hl\b@
N

11, 57% yield

H

Me
CbzN

2, 72% yield

Boc

12, 51% yield

o Me
Me

MeWMe

H

15, 59% yield® (#)-16, 67% yield”

naturally-sourced olefin substrates

Me Me O TN e

adjacent quaternary

[¢) Me centers

MeO

from estrone core

21, 51% yield

from terpinyl acetate

20, 67% yield? .

Me
Me Me o
N OMe
o

22, 72% yield®

Me

<5
NCbz

14, 53% yield

Cbz

13, 54% yield

Me
H H o
Me O\\ //O Me />
s o H
H Me H
o © CbzN
Cl NBoc

17, 63% yield

18, 45% yield 19, 54% yield

MHAT activation using alternative classes of Trsystems
H
H H o Me>[
L MJ:J\Q S G
R o e o O\2<Me
Me

Me

23, 59% yield” 24, 70% yield®

adjacent heteroatoms tolerated e orthogonal handles preserved

“Typically performed using methanol (3 equiv), NHC-1 (3.3 equiv), pyridine (3.15 equiv) in MTBE (0.50 M) for 30—4S min, then alkene (0.5
mmol, 1 equiv), 3 (0.25 mol %), 4 (20 mol %), 5 (10 mol %), TMDS (S equiv), Bz,0, (4 equiv), KOAc (0.5 equiv), H,O (S equiv) and MTBE/
DMA (4:1, 0.067 M), under IPR irradiation (450 nm) for 2 h. All yields isolated unless noted otherwise. See SI for experimental details. *Yield
determined by 'H NMR (due to volatility/instability). Boc, tert-butoxycarbonyl.

With optimal conditions in hand, we next evaluated the alkene
scope for this transformation. To our delight, Markovnikov
hydromethylation was achievable with a full branched selectivity
across a range of alkene substitution patterns (Table 2).
Notably, while terminal olefins furnish modestly nucleophilic
secondary radicals upon MHAT activation,'”*® these inter-
mediates consistently underwent facile radical sorting to deliver
hydromethylated products (6—10, 42—64% vyield). Addition-
ally, substrates bearing hindered di- or trisubstituted alkenes
were readily leveraged as tertiary radical precursors via MHAT.
This extension resulted in products containing quaternary
centers (2 and 11—19, 45—72% yield), motifs that remain
elusive under many typical cross-coupling conditions.”"*” Given
the absence of low-valent Ni intermediates (e.g., Ni(0) species)
in Ni(II)/Ni(III) radical sorting platforms, >”** a selection of
functional groups typically sensitive to oxidative addition,
including allylic carboxylates and aryl halides, are chemo-
selectively tolerated in all cases.”> Moreover, several naturally
sourced terpenoid- and hormone-derived substrates were
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competent within this protocol (20 and 21, 67% and 51%
yield, respectively), furnishing congested motifs (including
contiguous quaternary carbons) in short order. Beyond
traditional “unactivated” alkenes, deoxygenative hydromethyla-
tion could be extended to heteroatom-bearing 7-partners (22—
24, 59—72% yield), a finding that may inform C(sp*)-enriching
coupling sequences via exploitation of retained orthogonal
functionality (i.e, boronic esters).”” Overall, this protocol
affords medicinally valuable gem-dimethyl, methylcycloalkyl,
and quaternary units from diverse olefins,”" all while using abulk
solvent (methanol) as an atypical methylating reagent.*

To probe the versatility of this new technology, we next
investigated the scope of alcohols amenable to deoxygenative
hydroalk?rlation (Table 3). Using Ni(diketonate) sorting
catalysts, °® an array of primary substrates were readily paired
with hindered olefins to provide direct access to quaternary
centers (see SI for additional hydroalkylation examples).*
Gratifyingly, ethanol and ether-, acetal-, or ketone-containing
alcohol substrates were broadly successful (25—31, 51-74%

https://doi.org/10.1021/jacs.4c02316
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Table 3. Alcohol Scope for Deoxygenative Hydroalkylation®

/\/\/O ~
HO Al
CbzN ;

alkene partner alcohol partner
alcohol product alcohol
H
HO™ Me Me HO™>""ome
CbzN

25, 51% yield

H OEt

OEt H o/\/\ O/\ Ph
CbzN

28, 55% yield

Me
Me
H [¢]
(o]

Cbzrd/\/K/

(#)-31, 54% yield

Boc

)

CbzN

(£)-34, 52% yield

H

NHCbz
CbzN

37, 66% yield

NHCbz NHCbz
HO > HO >

1°vs. 2° alcohol

H Me
Me (‘ OH
OH
CbzN HO

40, 89% yield

1°vs. 3° alcohol

( on

HO/\)<

Me
Me

“Isolated yields reported. See SI for experimental details.

H
Ir J{ Niy(Mn (o] N
( )NHc Si CbzN 4
v
hydroalkylation product
product alcohol product

H

OMe
CbzN

26, 68% yield

Me
HO/\)\OMe

Cbz

z
=
=
@
[e]
=
@

(3)-27, 64% yield

H

H o
~ L
0" >ph Me
CbzN HO Me CbzN
29, 52% yield 30, 74% yield
H H
o o
CbzN

CbzN

()32, 73% yield

H
N
CbzN o

35, 63% yield

()33, 56% yield

A

4
z

Ho/\/[()j
g
N

HO CbzN

36, 60% yield

H 1°vs. 3° alcohol
Br H OH
Me ( oH
3
Ho CbzN NBoc
CbzHN NBoc

38, 53% yield 39, 44% yield

1°vs. 3° alcohol

HO

H OH

Csz

(£)-41, 56% yield

=

o =
I o

=
@

OH
Me

Me

g

CbzN

(£)-42, 55% yield

yield), as were substrates bearing tetrahydropyran (32 and 33,
73% and 56% yield, respectively), morpholine (34, 52% yield),
lactam (35, 63% yield), or pyridine (36, 60% yield) heterocyclic
functionality. Moreover, the functional group tolerance of this
method allowed for retention of protic motifs, such as amine
derivatives and unprotected distal alcohols (37—42, 44—89%
yield). This finding is significant given that sequential, site-
selective diol deoxygenations are well-established using NHC-
1;"° as such, MHAT-olefin coupling may represent a practical
entry point toward elaborating native polyols into complex
alkylated scaffolds.

Lastly, to rapidly produce drug-like molecular architecture
from native functionality,’ ™ we harnessed olefin—alcohol
coupling for the late-stage derivatization of therapeutic scaffolds.
Using a selection of commercial alcohols, diverse C(sp®)-rich
products were furnished directly from bioactive compounds
bearing pendant olefins (Table 4). Through the hydroalkylation
of antibiotics, antihypertensives, stimulants, steroids, and

muscular dystrophy or hyperuricemia medications, this
approach delivered a series of novel and potentially efficacious
drug analogues amenable to further evaluation (43—50, 30—
74% yield). Across all cases, the unique tolerance of this method
for labile functionality—including epoxides, oxidation-sensitive
amines or sulfides, coordinating alcohols or heteroarenes, and

42,4345 .
—was critical

oxidative addition-prone 1,2,4-oxadiazoles
for generating complex molecular architecture efficiently.

Collectively, these examples underscore the utility, expe-
diency, and selectivity offered by metallaphotoredox olefin—
alcohol coupling in the construction of aliphatic scaffolds of
medicinal relevance. Moreover, we envision that synergistic Ir/
Mn/Ni triple cocatalysis can be generically advantageous for
C(sp*)—C(sp*) bond formations between olefins and various
radical partners. As such, further mechanistic evaluation and
application of this photocatalytic platform will be reported in
due course.
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Table 4. Hydroalkylation of Bioactive Compounds®

late-stage hydromethylation

H
KoV
OH N

from ataluren core from retapamulin
(muscular dystrophy)

43, 51% yield

(pleuromutilin antibiotic)
44, 30% yield

Pr

H

Pr

from picrotoxinin

from cholesteryl benzoate
(steroid derivative)
45, 74% yield?

(stimulant/convulsant)
46, 51% yield

late-stage hydroalkylation

CN
j/©/o
' 1
Me X Me Me
\

S

HN
o Me  Me

\/:O/\XOH

CN
\/©/O
. i
Me X Me Me
\

S

HN
0 OH

H Me
Me

from cholesteryl benzoate
(steroid derivative)
48, 70% yield®

from febuxostat core
(hyperuricemia treatment)
47, 60% yield

Me

using: /\)<Me
HO OH

H
S
Me OH
Me
[¢]
O Me
/4) all via:
N™ N\
NHCbz N Ir
Me Me Mn
H
N

from picrotoxinin from telmisartan core
(hypertension treatment)

50, 64% yield

(stimulant/convulsant)
49, 34% yield

“All yields isolated unless noted otherwise. See SI for experimental details. “Yield determined by 'H NMR.
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