Clusters

An indroduction through case studies

Jerry Ruizhe Chen MacMillan Group Literature Presentation Dec 5th, 2023

It's not a long story

History

It's not a long story

History

Chemists have been discovering Clusters But... Much like we don't get all natural products from animals Can we make them?

General procedures

Metal salts

Steel pressure vessel

Autoclave (100-150°C)

Days

Cluster crystal

General procedures

General procedures

Metal salts

High-Temp reactor (500-1200°C)

Cluster powder

General procedures

Oxidized salts

Metal reductant

Carbon monoxide

Carbonyl clusters

General procedures

General procedures

CO reductive synthesis

Case study I: "The important one" $Au_{55}[P(C_4H_5)_3]_{12}Cl_6$

Au₅₅[P(C₄H₅)₃]₁₂Cl₆ Case study I

AU₅₅[P(C₄H₅)₃]₁₂Cl₆ Case study I

$Au_{55}[P(C_4H_5)_3]_{12}Cl_6$ Synthesis

Translatable strategy

Au₅₅, Ru₅₅, Rh₅₅, Pt₅₅, Co₅₅ can all be made similarly

Generate M(0) waste

$Au_{55}[P(C_4H_5)_3]_{12}Cl_6$ Synthesis

 $B_{2}H_{6}$ $Ph_{3}P-Au-Cl \qquad \longrightarrow \qquad [Au_{9.2}(PPh_{3})_{2}Cl]_{n}$ $50-60^{\circ}C$ Benzene

Translatable strategy

Au₅₅, Ru₅₅, Rh₅₅, Pt₅₅, Co₅₅ can all be made similarly

Generate M(0) waste

$Au_{55}[P(C_4H_5)_3]_{12}Cl_6$ Synthesis

Translatable strategy

Au₅₅, Ru₅₅, Rh₅₅, Pt₅₅, Co₅₅ can all be made similarly

Why 55? Generate M(0) waste

Metals really like to be close packed!

Let's expand the packing from the simplest repeating unit.

2 layers

3 layers

4 layers

M13

3 layers

4 layers

M13

M55

4 layers

M13

M55

M147

M13

M55

M147

M13

M55

M147

M13

M55

M147

M309

y=10n^2+2

$Au_{55}[P(C_4H_5)_3]_{12}Cl_6$

Heterogeneous catalysis

Ph₃P-Au-Cl

[Au_{9.2}(PPh₃)₂Cl]_n

Translatable strategy

Au₅₅, Ru₅₅, Rh₅₅, Pt₅₅, Co₅₅ can all be made similarly

Generate M(0) waste

Ph₃P-Au-Cl

[Au_{9.2}(PPh₃)₂Cl]_n

Unfortunately, a wide range of M₅₅ failed as efficient catalysts

Translatable strategy

Au₅₅, Ru₅₅, Rh₅₅, Pt₅₅, Co₅₅ can all be made similarly

Generate M(0) waste

Ph₃P-Au-Cl

[Au_{9.2}(PPh₃)₂Cl]_n

Unfortunately, a wide range of M₅₅ failed as efficient catalysts

Translatable strategy

Au₅₅, Ru₅₅, Rh₅₅, Pt₅₅, Co₅₅ can all be made similarly

Generate M(0) waste

Ph₃P-Au-Cl

[Au_{9.2}(PPh₃)₂Cl]_n

Unfortunately, a wide range of M₅₅ failed as efficient catalysts

Transistable strategy

Poor thermo stablity Au₅₅, Ru₅₅, Rh₅₅, Pt₅₅, Co₅₅ can all be made similarly

Generate M(0) waste

Ph₃P-Au-Cl

[Au_{9.2}(PPh₃)₂Cl]_n

Unfortunately, a wide range of M₅₅ failed as efficient catalysts

Poor thermo stablity $60^{\circ}C$ $R \sim R^{\circ}$ $R \sim R^{\circ}$ $R \sim R^{\circ}$

Ph₃P-Au-Cl

[Au_{9.2}(PPh₃)₂Cl]_n

Unfortunately, a wide range of M₅₅ failed as efficient catalysts

Poor thermo stablity $120^{\circ}C$ $R \xrightarrow{} Si$ $F \xrightarrow{} Si$ TON = 1 Can we make more stable clusters?

M13

M55

M147

Case study II: The most studied cluster catalyst system

Case study II: The most studied cluster catalyst system $Pd_{561}L_{60}(OAc)_{180}$

Pd₅₆₁L₆₀(OAc)₁₈₀ Synthesis

Wait...I think it should be Pd₅₄₀

Characterization

How do we arrive at the formula $Pd_{561}L_{60}(OAc)_{180}$?

Characterization

Characterization

How does it work?

Orders of magnitude more resolution than optical spectroscopy

Characterization

TEM data shows 3 kinds of Pd:
1) majority of Pd are in FCC environment
2) Distorted five-fold axis indicates icosahedral
3) Low symmetry sites were identified

Characterization

TEM data shows 3 kinds of Pd:

- 1) majority of Pd are in FCC environment
- 2) Distorted five-fold axis indicates icosahedral
- 3) Low symmetry sites were identified

The Pd₅₄₀ accounts for only the first and second kind So there are more than 540 Pd atoms

Supported by other microscopy and element analysis The formula was deducted to be Pd_{570±30}L_{63±3}(OAc)_{190±10}

The magic number 561 was suspected to be the result of averaging the ensemble of clusters in different sizes

Heterogeneous catalysis

The Pd-561 is significantly more competent as a catalyst

Can we add stability by other means?

Case study III: Stablize by ethers

Bo nnemann's nanocluster systems

Case study IV: Stablize by inorganic

Polyoxoanion- and tetrabutylammonium-stabilized transition-metal nanoclusters

Bo nnemann's nanocluster systems

Synthesis

Bo"nnemann's nanocluster systems

Synthesis

Bo"nnemann's nanocluster systems

Synthesis

Bo"nnemann's nanocluster systems

Synthesis

Translatable strategy

Cr, Co, Mo, etc can all be made as stable cluster solutions

Ether is rather important for stability

Participate out under H₂ makes it ineffective catalyst

Can we fix that?

Importance of support

Dipping support in Cluster solutions

SMCs

Support materials

Supported clusters

Heterogeneous catalysis

SMCs play important role in heterogeneous catalysis

Supported clusters

Heterogeneous catalysis

By using chiral NR₄X in the synthesis asymmetric catalyst can be obtained

Polyoxoanion- and tetrabutylammonium-stabilized transition-metal nanoclusters

Synthesis

Polyoxoanion- and tetrabutylammonium-stabilized transition-metal nanoclusters

Synthesis

Polyoxoanion- and tetrabutylammonium-stabilized transition-metal nanoclusters Synthesis

Very interesting observation

Very interesting observation

- 1 equiv of COD was generated in 10 hrs.
- Hydrogenation of cyclohexane has an induction period ~2 hrs
- After 6 hrs, only 45% of COD was generated but >85% of cyclohexane.

What's happening here?

Very interesting observation

Only a small fraction of active catalyst is enough

• After 6 hrs, only 45% of COD was generated but >85% of cyclohexane.

What's happening here?

Very interesting observation

Only a small fraction of active catalyst is enough

The active catalyst is catalyzing the catalyst formation

Very interesting observation

Only a small fraction of active catalyst is enough

The active catalyst is catalyzing the catalyst formation

Very interesting observation

Very interesting observation

Nucleation

Very interesting observation

Nucleation

Autocatalysis

Very interesting observation

Very interesting observation

Auto catalysis enables fast turnover after induction period

Very interesting observation

Cluster Chemistry

Challenges- 4S

For more active, long-live, and selective catalysis

Scalability

-retaining isolability and catalytic activity remains challenging on gram scale synthesis.

Stability

-lack of physical chemical understanding lead to not having a general protocol to predict and synthesize stable clusters

Synthesis

-poor understanding of cluster formation kinetics needs to be improved to provide chemists with more controlled synthesis of clusters in particular size or shape.

Single active site heterogeneous catalysts

- Limiting a cluster to only one single active site to achieve theoretically 100% selectivity is one of the biggest promise of cluster chemistry to catalysis, methods of which to achieve that is still in the air.

The yet to be explored chemical space in clusters may have treasures within

Yu, A.; Choi, Y. H.; Tu, M. Pharmacol Rev 2020, 72, 862.