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ABSTRACT: We report a copper-catalyzed strategy for arylboronic ester synthesis that exploits photoinduced ligand-to-metal
charge transfer (LMCT) to convert (hetero)aryl acids into aryl radicals amenable to ambient-temperature borylation. This near-UV
process occurs under mild conditions, requires no prefunctionalization of the native acid, and operates broadly across diverse aryl,
heteroaryl, and pharmaceutical substrates. We also report a one-pot procedure for decarboxylative cross-coupling that merges
catalytic LMCT borylation and palladium-catalyzed Suzuki−Miyaura arylation, vinylation, or alkylation with organobromides to
access a range of value-added products. The utility of these protocols is highlighted through the development of a heteroselective
double-decarboxylative C(sp2)−C(sp2) coupling sequence, pairing copper-catalyzed LMCT borylation and halogenation processes
of two distinct acids (including pharmaceutical substrates) with subsequent Suzuki−Miyaura cross-coupling.

Cross-coupling reactions, particularly those between halide
electrophiles and organometallic nucleophiles under

transition metal catalysis, are widely used to produce complex
molecules of value within academic and industrial research.1

Among the possible organometallic cross-coupling partners,
boronic acids and related ester derivatives are particularly
desirable, partly due to their nontoxicity and bench stability.2

Beyond advantages in ease of handling, organoboron reagents
offer robust reactivity across numerous reaction types,
including allylation,3 conjugate addition,4 Chan−Evans−Lam
heteroatom arylation,5 and Suzuki−Miyaura C−C coupling
(Figure 1).6 In particular, Suzuki−Miyaura cross-coupling
remains among the most widely employed chemical reactions
across medicinal chemistry,7 underscoring the relevance of
organoboron nucleophiles in the discovery of new medicines
and other molecules of societal value.1,6 Given these
applications, the expedient production of organoboron
compounds and their subsequent deployment in cross-
coupling reactions remain of paramount importance to the
synthetic community.
Despite modern developments in the preparation of

arylboronic esters,8,9 these valuable reagents are most conven-
tionally generated either via addition of arylmetal nucleophiles
to borate electrophiles10 or through palladium-catalyzed
Miyaura reactions between aryl halides and diboron com-
pounds (Figure 1).11 While versatile, both methods require
synthetically prepared arene precursors, thereby lengthening
step counts and lowering atom economy when converting from
arene biomass to organoboron products.12 Alternatively,
approaches that produce boronic esters from naturally
occurring precursors, such as Ir-catalyzed C−H borylation of
arenes,13 are more sustainable and efficient. When considering
potential feedstocks, aryl carboxylic acids emerge as highly
desirable substrates for regiospecific borylation, given their
abundance and structural diversity in nature, commercial

availability, and late-stage accessibility via oxidation or
hydrolysis (Figure 1).14 However, current approaches to
aromatic decarboxylative borylation suffer from challenges
associated with inducing CO2 extrusion.

14,15 The prohibitively
slow thermal decarboxylation of aryl acids often requires high
temperatures, harsh reagents, or the presence of a destabilizing
ortho-substituent,14−20 conditions that generally preclude
subsequent borylation steps. Moreover, despite the broad
utility of photoredox catalysis for organic synthesis,21,22 single-
electron transfer decarboxylation (via aroyloxyl radicals) often
suffers from undesired hydrogen atom transfer, back-electron
transfer, and arene addition pathways that compete with
sluggish decarboxylation steps.23,24 Although photoredox and
decarbonylative processes have occasionally been deployed to
prepare borylated aryl acid derivatives, these protocols can
require forcing conditions, specific ligands, or acid prefunction-
alization and are sparingly applied to medicinally relevant,
electron-deficient heteroaryl substrates.25−28 Additionally, such
technologies are infrequently merged with organohalide cross-
coupling in single-vessel sequences, an advance that would
enable direct feedstock-to-complex molecule synthesis while
circumventing purification and handling of organoboron
intermediates.29 Overall, these outstanding challenges could
be addressed using new mechanistic approaches to aromatic
decarboxylative borylation.
Ligand-to-metal charge transfer (LMCT), a procedure for

generating radical intermediates through photonic excitation of
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coordination complexes,30 has emerged as a versatile platform
for engaging alcohols,31 halides,32 and aliphatic carboxylates33

as substrates in open-shell synthetic chemistry. Recently,
LMCT activation was demonstrated to produce aryl radicals
from aryl acids via near-UV excitation of Cu(II) carboxylates
and subsequent CO2 extrusion.34 Notably, our lab also
established this ambient-temperature process to be catalytic
in copper when paired with turnover-inducing single-electron
oxidants, a discovery that was generally applied to aromatic
decarboxylative halogenation.35 Given the extensive precedent
for aryl radical borylation using diboron reagents,9 we
anticipated that Cu-LMCT decarboxylation could be a
versatile catalytic strategy to access boronic ester adducts
from a wide variety of (hetero)aryl acid substrates (Figure 1).
Furthermore, the mild conditions of such a reaction should be
compatible with reagents typically used for organoboron cross-
coupling, thereby permitting single-vessel reaction sequences
that transform aryl acids directly to value-added products.

Herein, we report the successful design of a copper-catalyzed
LMCT decarboxylative borylation platform and its merger with
palladium-catalyzed Suzuki−Miyaura coupling for one-pot
decarboxylative cross-couplings of diverse (hetero)aryl acids.
On the basis of our recently developed catalytic Cu-LMCT

aryl acid decarboxylation,35 we envisioned a plausible
mechanism for decarboxylative borylation, shown in Scheme
1a. Initially, a Cu(I) precatalyst combines with an aryl
carboxylate (generated in situ via aryl acid deprotonation)
and a single-electron oxidant to provide a photoexcitable
Cu(II) carboxylate complex. Under near-UV irradiation (365
nm), the complex enters into an excited state capable of
intramolecular charge transfer (LMCT) from the carboxylate
ligand to the Cu(II) center. This process furnishes a reduced
Cu(I) catalyst and an aroyloxyl radical, which can extrude CO2
to generate the key aryl radical intermediate.34,35 In principle,
this LMCT event could be reversible, allowing the aroyloxyl
radical to be deleteriously sequestered by Cu(I) prior to
decarboxylation; however, we envisioned that rapid geometric
reorganization and ligand exchange of the newly formed Cu(I)
complex would outcompete this undesired reverse pathway.36

Following decarboxylation, the aryl radical can be function-
alized according to well-established group transfer mechanisms
using an activated metal boronate (generated in situ from
diboron reagents and metal salt additives) to deliver the
arylboronic ester product.9,37,38 The Cu(I) complex produced
by LMCT reduction can then ligate another aryl carboxylate
and undergo reoxidation to continue the catalytic cycle.
In optimization studies, summarized in Scheme 1b,c, we

investigated the decarboxylative borylation of 4-fluorobenzoic
acid. Initial success was achieved using Cu(MeCN)4BF4 as the
copper catalyst, N-fluorobenzenesulfonimide (NFSI) as an
oxidant, bis(pinacolato)diboron (B2Pin2) as the diboron
reagent, and the integrated photoreactor (IPR)39 as a high-
intensity light source for 365 nm irradiation. Using MeCN as
solvent, this Cu-LMCT combination afforded the desired
product 1 in 40% yield (entry 1). Recognizing the established
need for anionic activation of the diboron reagent,9,37 we
identified tetrafluoroborate and fluoride salts as key beneficial
additives (entries 2 and 3).40 In particular, substoichiometric
amounts of CsF afforded 82% yield of 1 in the presence of
higher loadings of B2Pin2 and NFSI (entry 4); these results
were replicated using 1 equiv of NaF as a nonhygroscopic
fluoride source (entry 5). Ultimately, the use of NaF and
LiClO4 as tandem additives delivered an optimal yield of 85%
(entry 6), providing conditions broadly applicable to both aryl
and heteroaryl acids (see Supporting Information (SI) for
additional optimization experiments). On the basis of prior
evidence for the behavior of diboron reagents in radical
borylation,9,37,40 NaF and LiClO4 most likely serve as MeCN-
soluble ion sources required to generate the activated lithium
fluoroborate shown in Scheme 1b; in contrast, the poorly
soluble LiF salt is suboptimal for this transformation (entry 7).
Control reactions (Scheme 1d) are consistent with the
proposed LMCT pathway, as copper, oxidant, and light are
essential for reactivity (entries 8−10). Near-UV IPR irradiation
at maximum intensity is also favored for efficient decarbox-
ylation, as lower-intensity UV Kessil lamps (entry 11) or red-
shifted IPR LED sources (entries 12−14), while capable of
furnishing product, result in reduced conversion.41

With optimized conditions in hand, we next sought to
investigate the scope of this transformation with respect to the
aryl acid component (Table 1). As an initial example, benzoic

Figure 1. Decarboxylative borylation and C−C cross-coupling of
(hetero)aryl acids via Cu-LMCT catalysis.
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acid was readily borylated (2, 65% yield), suggesting that this
method does not require electronically or sterically biased
substrates to operate effectively. Gratifyingly, halogenated acids
containing pharmacophores (1 and 3, 80% and 73% yield,
respectively) or electrophilic coupling handles (4, 77% yield)
were readily adopted in this protocol, as were electron-
deficient aryl acids bearing nitrile, trifluoromethyl, or ester
functionality (5−8, 55−78% yield). Moreover, acids bearing
electron-donating alkyl groups were also broadly competent
(9−11, 62−72% yield), highlighting both the electronic
generality of this method and its tolerance for typically labile
benzylic motifs. Additionally, O- and S-heteroatom substitu-
ents were effectively introduced around the arene periphery
(12−14, 69−75% yield), and ortho-substitution was well-
tolerated (15, 50% yield).
Encouraged by these results, we then investigated the

heteroaryl acid scope, as general approaches to decarboxylative
borylation for such medicinally relevant scaffolds remain

elusive.23,26 We were pleased to find that a range of
pyridine-derived nicotinic acids were successfully borylated
under the standard conditions (16−20, 45−73% yield),
including substrates bearing various substitution patterns and
sterically impeding ortho-chloro functionality. Other pyridine
acid regioisomers, such as isonicotinic acids, also participated
effectively in this reaction (21−23, 47−69% yield). Although
the instability of 2-borylated nitrogen aromatics has thus far
precluded use of the corresponding acids in this system,42,43 a
pharmaceutically relevant pyrimidine core (24, 51% yield) and
a five-membered ring pyrazole system (25, 42% yield) were
found to be competent substrates for LMCT-induced
borylation. Furthermore, commercial aryl acid-bearing phar-
maceutical agents such as Lumacaftor were readily amenable to
borylation (26, 41% yield). Altogether, the ability of this Cu-
LMCT decarboxylative borylation technology to accommodate
an electronically diverse array of ortho-, meta-, or para-

Scheme 1. Development of a Catalytic Cu-LMCT Decarboxylative Borylation Reaction: (a) Plausible Mechanism, (b) Key
Components of Optimal Reaction Setup, (c) Summary of Optimization Studies, and (d) Control Reactions for Optimized
Conditions

aYields determined by 19F NMR. 0.1 M MeCN used in all cases. See SI for experimental details. B2Pin2, bis(pinacolato)diboron; NFSI, N-
fluorobenzenesulfonimide.
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substituted (hetero)aryl substrates showcases the unique
robustness and versatility of this reaction platform.43

In an effort to exploit the generality of this LMCT
borylation reaction, we next pursued the development of a
convenient protocol to directly deploy these arylboronic ester
adducts in subsequent reactions, without further isolation. In
particular, we envisioned that the mild conditions of our Cu-
LMCT process would allow a subsequent cross-coupling step
in the same vessel. Given the importance of the Suzuki−

Miyaura coupling reaction,6,7 we targeted the design of a one-
pot decarboxylative arylation procedure encompassing sequen-
tial LMCT borylation and palladium-catalyzed coupling of the
resultant boronic ester with bromide coupling partners.44,45

Gratifyingly, this borylation/arylation sequence was executed
by directly adding Suzuki−Miyaura reagents to the crude
borylation mixture following irradiation (Table 2), using
Pd(PPh3)4 as a commercially available palladium catalyst
(see SI for optimization studies).

Table 1. (Hetero)aryl Acid Scope for Cu-LMCT Decarboxylative Borylationa

aIsolated yields unless otherwise indicated. See SI for experimental details. bYield of corresponding phenol following oxidative workup. cCu(OTf)2
(20 mol %) used as catalyst. dYield determined by 1H NMR. e5 equiv of B2Pin2 used; 1 equiv of LiF used instead of NaF/LiClO4.
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Delightfully, this one-pot decarboxylative arylation was
successfully conducted across a diverse range of benzoic acid
substrates, including those for which the analogous organo-
boron reagents are not readily available.46 As shown in Table 2,
this sequence could incorporate a wide range of aryl bromides
(27−31, 56−80% yield) and heteroaryl bromides (32−35,
42−73% yield), including a five-membered ring coupling
partner (36, 51% yield), en route to a variety of (hetero)biaryl

products. Perhaps most appealingly, these decarboxylative
Suzuki−Miyaura reactions require no specific electronic or
steric bias to facilitate CO2 extrusion or cross-coupling.14−20

Beyond arylation, the Suzuki−Miyaura step could be applied
to decarboxylative vinylation, using vinyl bromides (37 and 38,
57% and 70% yield, respectively), and to decarboxylative
alkylation with benzylic halides lacking elimination-prone β-
hydrogens (39, 53% yield). Moreover, unactivated alkyl halides

Table 2. Scope for Decarboxylative C−C Coupling via One-Pot Borylation/Suzuki−Miyaura Sequencea

aIsolated yields reported. 2:1 MeCN/H2O (0.067 M) used as solvent for Suzuki−Miyaura step. See SI for experimental details and additional
examples. bCs2CO3 (15 equiv) used instead of K2CO3.

cCu(OTf)2 (20 mol %) used instead of [Cu(MeCN)4]BF4.
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(i.e., MeI) enabled decarboxylative alkylation sequences when
simple aqueous workups were performed following LMCT
borylation (see SI for further details). In addition to benzoic
acids, heteroaryl acids were susceptible to decarboxylative
arylation with both aryl bromide (32, 53% yield) and
heteroaryl bromide partners (40, 56% yield), circumventing
the challenges often associated with handling heteroarene-
based organoboron compounds.42

Lastly, we sought to merge our previously developed Cu-
LMCT halogenation protocol with our new LMCT
borylation/cross-coupling method. Specifically, we envisioned
that LMCT approaches could furnish both the organoboron
and aryl halide coupling partners from the corresponding
(hetero)aryl acids, thereby enabling a heteroselective platform
for the elusive double-decarboxylative cross-coupling of two
distinct, non-ortho-substituted acids (Scheme 2).47 Indeed, this
cross-acid coupling sequence was executed by (i) performing
parallel Cu-LMCT bromination and borylation procedures on
distinct acids, (ii) concentrating the bromination reaction in
vacuo, (iii) transferring the borylation mixture to the
bromination vessel, and (iv) adding Suzuki−Miyaura reagents
to the combined mixture. Encouragingly, this strategy enabled
the coupling of a picolinic acid (subjected to LMCT
bromination) with a benzoic acid (subjected to LMCT
borylation) to furnish 41 in 63% yield. Moreover, the
pharmaceutical etoricoxib, following tolyl-group oxidation,
was coupled with a series of benzoic acids to directly afford
an aryl-etoricoxib derivative library (42−44, 40−44% yield).
Notably, this drug modification can employ low-cost acids that
are more accessible than the corresponding organoboron
analogues,48 demonstrating unique advantages of this double-
decarboxylative strategy. We expect these discoveries will

permit new synthetic approaches for converting aryl acid
feedstocks to value-added products, and further investigation
of LMCT-enabled aromatic decarboxylative coupling is
currently underway.
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