Metal Nanoparticles in Catalysis

María González Esguevillas MacMillan Group Meeting May 15, 2018

Outline

General Concepts

Metal-NPs as catalyst in organic chemistry

Metal-NPs in Photocatalysis

Nanoparticle:

A particle with dimensions less than 100 nm A microscopic particle of matter that is measured on the nanoscale

Introduction to Nanoparticles

Nanoparticle:

A particle with dimensions less than 100 nm A microscopic particle of matter that is measured on the nanoscale

NanoScience

NanoTechnology

Nanoparticle:

A particle with dimensions less than 100 nm A microscopic particle of matter that is measured on the nanoscale

Nanoparticle:

A particle with dimensions less than 100 nm A microscopic particle of matter that is measured on the nanoscale

9th Century Middle Ages Renaissance 1857 1970-80 **4th Century** Present USA and Japan Rome Mesopotamia Luster in glassy matrix of the Faraday ceramic glaze Alexandria 1st description of the Glittering effect in 1st fundamental Lycurgus Cup Ancient Stained-Glass optical properties of Pottery studies with NPs nanoscale-metals AgNPs, 100 nm, Sphere AuNPs, 25 nm, Sphere AgNPs, 40 nm, Sphere AgNPs, 100 nm, Prism AuNPs, 50 nm, Sphere AuNPs, 100 nm, Sphere

Nanoparticles along the time

Introduction to Nanoparticles

Classification

Introduction to Nanoparticles

Classification

Danquah, M. K. et al. Beilstein J. Nanotechnol. 2018, 9, 1050

www.nano.gov

Synthesis of Metal-Nanoparticles

General Procedures

Chemical Reduction of Metal Salts

Displacement of Ligands from Organometallic Compounds

Ghorbani, H. R. Arabian J. of Chemistry . **2014**, DOI: 10.1016/j.arabjc.2014.12.014 Patin, H. Chem. Rev. **2002**, 102, 3757

Synthesis of Metal-Nanoparticles

General Procedures

Thermal, Photochemical or Sonochemical Decomposition

Condensation of Atomic Metal Vapor

Patin, H. Chem. Rev. 2002, 102, 3757

Synthesis of Metal-Nanoparticles

General Procedures

Reduction by Electrochemical Methods

Ghorbani, H. R. Arabian J. of Chemistry . **2014**, DOI: 10.1016/j.arabjc.2014.12.014 Patin, H. Chem. Rev. **2002**, 102, 3757 Properties of Metal-Nanoparticles

Metal-Nanoparticles: Applications

Photocatalysis

Outline

General Concepts

Metal-NPs as catalyst in organic chemistry

Metal-NPs in Photocatalysis Metal-Nanoparticles in Catalysis

Why use Metal-Nanoparticles in catalysis instead homogeneous catalysis?

Islam, Sk. M. ACS Sustainable Chem. Eng. 2017, 5, 648

Metal-Nanoparticles in Catalysis

How many posibilities can we choose to make MNPs? Can I predict the catalytic effect?

Reaction and Mechanism

Accepted Mechanism

Philippot, K. Catal. Sci. Technol. 2014, 4, 2445

New Metal-NanoParticles

Noble metal-free NanoParticles

co-reduction of Ni(acac)₂ and Cu(acac)₂ with BBA in oleylamine and oleic acid

monodisperse CuNiNPs

15 - 16 nm Cu/Ni ratio 3:1 to 1:3 *graphene supported*

spheres

New Metal-NanoParticles

New Metal-NanoParticles

Mechanistic Studies

Mechanistic Studies

— Most plausible hydrogenation pathways

Ionic hydrogenation

- support, additive, substrate collaborate with Au surface
- direct heterolytic activation of H₂
- transfer of one H⁺ to form metal hydride

Mechanistic Studies

— Most plausible hydrogenation pathways

Ionic hydrogenation

- by low-coordinated Au surface sites
- H atom formation in brigde positions sharing Au atoms
- no deformation of Au-Au distances

Dissociative Chemisortion of H₂

Mechanistic Studies

— Most plausible hydrogenation pathways

Dissociative Chemisortion of H₂

not yet been reported

Au atoms or nanoclusters shows better selectivity for butadienes, internal alkynes, carbonyl compounds

Mechanistic Studies

Dissociative Chemisortion of H₂

Outer-sphere: Disproportion

not yet experimentally

proved

Mechanistic Studies

Hydrogenation pathways (heterolytic, homolytic or outer sphere) are directly related to the nature of support

Dupont, J. ACS Catal. 2017, 7, 2791

Mechanistic Studies

Based on the experimental results, kinetic effects and kinetic models

Transfer Hydrogenation Reaction of Carbonyl Compounds

Ni source as an alternative of Pt, Pd, Ir, Os and Ru: Ni complexes, Ni-Raney and NiNPs

Sreedhar, B. *ChemCatChem.* **2016**, *8*, 1139 von Wangelin, A. J. *Current Org. Chem.* **2013**, *17*, 326

Aerobic Alcohol Oxidation

Pt NPs stabilizing with PVP (1.5 nm)

Suzuki Cross-Coupling

NiNPs formed in situ and used in combination with micellar catalysis

Lipshutz, B. H. Angew. Chem. Int. Ed. 2015, 54, 1194

Carbonylative Suzuki Cross-Coupling

Wu, X.-F. Chem. Rev. 2018, DOI: 10.1021/acs.chemrev.8b00068

Chiral Metal-NanoParticles

Could we use Metal Nanoparticles in asymmetric catalysis?

Kobayashi, S. ACS Catal. 2016, 6, 7979

Chiral Metal-NanoParticles

Kobayashi, S. ACS Catal. 2016, 6, 7979

Chiral Metal-NanoParticles

Chiral Metal-NanoParticles

Biogenic Cu-NanoParticles

Islam, Sk. M. ACS Sustainable Chem. Eng. 2017, 5, 648

Biogenic Cu-NanoParticles

Islam, Sk. M. ACS Sustainable Chem. Eng. 2017, 5, 648

Outline

General Concepts

Metal-NPs as catalyst in organic chemistry

Metal-NPs in Photocatalysis

Introduction

Metal nanoparticles (Au and Ag) have optical properties: Lycurgus Cup

Zhu demostred the potencial use of AuNPs as photocatalyst for reduction of nitroarenes

Ye, J. Nature Sci. Rev. 2017, 4, 761

Zhu, H.-Y. Chem. Asian J. 2014, 9, 3046

Zhu, H.-Y. Catal. Sci, Technol. 2016, 6, 320

Based on the nature of photocatalysis

Semiconductor photocatalysis

- TiO₂: Absorb photons in UV (wide band gap = 3.2 eV)
- Doping TiO_2 with metal ions, oxides, clusters:

high probability of electron-hole recombination energy lost during charge transfer weak affinity toward many organic reactants low concentration of active sites

Ye, J. *Nature Sci. Rev.* **2017**, *4*, 761 Zhu, H.-Y. *Chem. Asian J.* **2014**, *9*, 3046 Zhu, H.-Y. *Catal. Sci, Technol.* **2016**, *6*, 320

Based on the nature of photocatalysis

Semiconductor photocatalysis

- TiO_2 : Absorb photons in UV (wide band gap = 3.2 eV)
- Doping TiO_2 with metal ions, oxides, clusters:

high probability of electron-hole recombination energy lost during charge transfer weak affinity toward many organic reactants low concentration of active sites

Direct photocatalysis of metal nanoparticles

Based on the nature of photocatalysis

Semiconductor photocatalysis

- TiO_2 : Absorb photons in UV (wide band gap = 3.2 eV)
- Doping TiO_2 with metal ions, oxides, clusters:

high probability of electron-hole recombination energy lost during charge transfer weak affinity toward many organic reactants low concentration of active sites

Direct photocatalysis of metal nanoparticles

MNPs can intensely absorb visible light by two mechanism

Photoelectric effect

Energy dependent: ejection of electron or hot electron with low energy (by subsequent electron-electron collision)

Based on the nature of photocatalysis

Semiconductor photocatalysis

- TiO_2 : Absorb photons in UV (wide band gap = 3.2 eV)
- Doping TiO_2 with metal ions, oxides, clusters:

high probability of electron-hole recombination energy lost during charge transfer weak affinity toward many organic reactants low concentration of active sites

Direct photocatalysis of metal nanoparticles

MNPs can intensely absorb visible light by two mechanism

Localized Surface Plasmon Resonance (LSPR)

Size dependent: Large NPs: stronger ligh absortion, not plasmon Small NPs: plasmon resonance

Localized Surface Plasmon Resonance

LSPR is an optical phenomena that occurs when light is incident on a conductive NP that is smaller than the wavelength of incident light, which **produce a strong interaction** between the incident **electric field** and the **free conduction electrons of the metal NPs**.

Frequency and strength depends on the intrinsic dielectric properties. Plasmon resonance can be tuned:

Zhu, H.-Y. *Chem. Asian J.* **2014**, *9*, 3046 Zhu, H.-Y. *Catal. Sci, Technol.* **2016**, *6*, 320

Localized Surface Plasmon Resonance

LSPR is an optical phenomena that occurs when light is incident on a conductive NP that is smaller than the wavelength of incident light, which **produce a strong interaction** between the incident **electric field** and the **free conduction electrons of the metal NPs**.

Frequency and strength depends on the intrinsic dielectric properties. Plasmon resonance can be tuned:

size

AuNPs (< 5 nm) not show LSPR absorption; good between 5-50 nm

Au clusters (more than 300 atoms < 2nm) exhibit absorption Small particles have larger specific surface (more active sites) Large particles: stronger light absorption

Zhu, H.-Y. *Chem. Asian J.* **2014**, *9*, 3046 Zhu, H.-Y. *Catal. Sci, Technol.* **2016**, *6*, 320

Localized Surface Plasmon Resonance

Calculated LSPR spectra of various AgNPs

LSPR absorbance spectra of Au, Ag and Cu spherical NPs (20 nm)

- MNPs can absorb the incident light in their vicinity
- MNPs absorb more light than seminconductors
- Use as PCat: Good combination of plasmonic effects and catalysis effect

Zhu, H.-Y. *Chem. Asian J.* **2014**, *9*, 3046 Zhu, H.-Y. *Catal. Sci, Technol.* **2016**, *6*, 320

Direct Photocatalysis on Plasmonic-Metal NPs

Plasmonic MNPs act simultaneously as light absorbers and catalytic sites when irradiated with visible light.

Ŷ

Charge transfer between the plasmonic metal and support (observed Metal/semiconductor) is not required for catalysis to occur

Three processes can transfer light energy into the adsorbed reactants:

(1) Elastic radiactive re-emission of photons

(2) Non-radiactive Landau-Damping: excitation of energetic electrons and holes in the metal particle

(3) Interaction of excited surface plasmons with unpopulated adsobate acceptor states

Inducing direct electron injection into the adsorbate (CID)

■ Size ■ Shape ■ Metal ■ Proximity (local electric field enhancement) ■ Surface

Direct Photocatalysis on Plasmonic-Metal NPs

Direct interaction between excited state and reactant

 Light energy is economically utilized: it is efficiently channeled into the reactant molecules.
No dispersion to other components of the reaction system

Proposed mechanism of direct charge injection from metal to adsorbate

Corma, A. Chem. Rev. 2018, DOI: 10.1021/acs.chemrev.7b00776

Zhu, H.-Y. Chem. Asian. J. 2014, 9, 3046

Direct Photocatalysis on Plasmonic-Metal NPs

The effect of the support

- Free-standing plasmonic NPs without support are **not stable** under visible light irradiation
 - Support should be inert
- Support metal oxides: similar structure to semiconductor photocatalyst modified with NPs Different active sites, electron transfer is not required Acid-base properties can facilitate the formation of products

Plasmonic NPs double functionality any support material (carbon, polymers)

- Good dispersion
- Enable the recovery ad recycling

■ *Mesoporosity may affect product selectivity due to steric restriction*

To understand the functionality of plasmonic PCat Plasmonic NPs + support

Corma, A. *Chem. Rev.* **2018**, DOI: 10.1021/acs.chemrev.7b00776 Zhu, H.-Y. *Chem. Asian. J.* **2014**, *9*, 3046

Reductions of Nitro Compounds

■ AuNP/ ZrO₂ (by reduction), 6 nm

- Surface Hydrogen species is formed by abstraction of H from the solvent
- H-Au can combine with N-O bonds to give OH-AuNP
- excited electron can provide the required energy for the cleavage of N-O bond

O₂ as byproduct

Guo, X. Y. Angew. Chem. Int. Ed. **2014**, *53*, 1973 Liu, W. Angew. Chem. Int. Ed. **2010**, *49*, 9657

Reductions of Nitro Compounds

■ Cu⁽⁰⁾NP/ Graphene (*by reduction*), 7 nm

- Electrons gain the energy of the incident light through the LSPR of CuNPs
 - Excited energetic electrons facilitate the cleavage of N-O bonds
 - Graphene stabilize NPs susceptible to oxidation

high yields

Guo, X. Y. Angew. Chem. Int. Ed. **2014**, *53*, 1973 Liu, W. Angew. Chem. Int. Ed. **2010**, *49*, 9657

Alcohol Oxidation

Au/Zeolite

Zeolite supports could concentrate reactants

Catalytic activity are influenced by the adsorptive properties of support, size of Au, LSPR effect and surface areas of NPs.

Scaiano, J. C. *J. Phys. Chem. C* **2011**, *115*, 10784 Zhu, H. Y. *Chem. Eur. J.* **2012**, *18*, 8048

Alcohol Oxidation

AuNPs

SET from AuNP and ketyl radical formation are initiated primarily through interaction of the NP surface with the light incident on the sample

sequential back electron tranfer and proton loss.

Scaiano, J. C. *J. Phys. Chem. C* **2011**, *115*, 10784 Zhu, H. Y. *Chem. Eur. J.* **2012**, *18*, 8048

Cross-Coupling Reaction

Au-Pd alloy NPs

similar mechanism to homogeneous catalysis

■ Au-Pd nanorods (25 nm), Au-Pd/TiO₂ (82 nm)

- high reactivity (up to 99%)
- under visible light and laser ilumination
- In one nanostructure the light energy absorbed by plasmonic component to be directly transferred to the catalytic component

Yan, J., *J. Am. Chem. Soc.* **2013**, *135*, 5588 Stevens. C. V. *Tetrahedron Lett.* **2012**, *53*, 1410

Metal Nanoparticles in Catalysis

María González Esguevillas MacMillan Group Meeting May 15, 2018