

Iakovos Saridakis

MacMillan research group Group meeting Literature Talk Nov 22nd, 2024

Brief tutorial introduction on Mechanochem (generally)

History Mechanistic aspects Mechanical actions and mechanoreactors Reaction Monitoring

Why mechanochemistry? Mechanochemical vs. solution-based reactions Medicinal mechanochemistry

"Mechanochemistry 2.0" Mechanoredox

Electrochemistry

Photochemistry

Thermal chemistry

Electrical potential

Photonic energy

Heat

Mechanochemistry

Electrochemistry Electrical potential

Photochemistry Photonic energy

Thermal chemistry Heat Mechanochemistry in Organic Synthesis Definition

Mechanochemistry

"Chemistry induced by input of mechanical energy"

Electrochemistry Electrical potential

Photochemistry Photonic energy

Thermal chemistry Heat

Terminology & subcategories

Mechanochemical reaction according to IUPAC: *'Chemical reaction that is induced by the direct absorption of mechanical energy'**

* 'Shearing, stretching, and grinding are typical methods for the mechano-chemical generation of reactive sites [...].'

Terminology & subcategories

Mechanochemical reaction according to IUPAC: 'Chemical reaction that is induced by the direct absorption of mechanical energy'*

* 'Shearing, stretching, and grinding are typical methods for the mechano-chemical generation of reactive sites [...].'

Terminology & subcategories

Mechanochemical reaction according to IUPAC: *'Chemical reaction that is induced by the direct absorption of mechanical energy'**

* 'Shearing, stretching, and grinding are typical methods for the mechano-chemical generation of reactive sites [...].'

Other popular term: 1970: <u>**Tribo**chemistry</u> (chemistry by friction)

Materials

- Polymer Chemistry
- Organic Chemistry
- Inorganic Chemistry

Inter-discipline miscommunication and debates

Terminology & subcategories

Mechanochemical reaction according to IUPAC: *'Chemical reaction that is induced by the direct absorption of mechanical energy'**

* 'Shearing, stretching, and grinding are typical methods for the mechano-chemical generation of reactive sites [...].'

History of Mechanochemistry

315 BC

"How does this work?"

"How does this work?"

"How does this work?"

"How does this work?"

Hot-spot theory

Magma-plasma model

"How does this work?"

Hot-spot theory

Magma-plasma model

Friction

Bowden, F. P. et al., Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 188, 329–349.

"How does this work?"

Hot-spot theory

Magma-plasma model

Plastic deformation

Irreversible bond cleavage/formation upon stress

Bowden, F. P. et al., Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 188, 329–349.

"How does this work?"

Hot-spot theory

Magma-plasma model

Bowden, F. P. et al., Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 188, 329–349.

"How does this work?"

Bowden, F. P. et al., *Proc. R. Soc. Lond. Ser. A Math. Phys. Sci.* **1947**, *188*, 329–349.

Thiessen, P. A. et al., Grundlagen der Tribochemie Ch. 1 (Akademie Verlag, 1967)

"How does this work?"

Bowden, F. P. et al., Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 188, 329–349.

Thiessen, P. A. et al., Grundlagen der Tribochemie Ch. 1 (Akademie Verlag, 1967)

"How does this work?"

Bowden, F. P. et al., Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1947, 188, 329–349.

Thiessen, P. A. et al., Grundlagen der Tribochemie Ch. 1 (Akademie Verlag, 1967)

"How does this work?"

Both for inorganic materials

Do not apply generally for organic mechanochemistry

- Hot-spots would result in decomposition
- Could exist only for negligible time periods

"How does this work?"

Both for inorganic materials

Do not apply generally for organic mechanochemistry

- Hot-spots would result in decomposition
- Could exist only for negligible time periods

Efforts focus on unveiling the underlying physics of mechanochemistry

"How does this work?"

Stuart L. James et al., Chem. Soc. Rev. 2012, 41, 413–447.

Mechanical Actions

Classification of Mechanical Actions

(i.e., the stimuli which induce mechanochemical reactions)

Mechanical Actions

Classification of Mechanical Actions

(i.e., the stimuli which induce mechanochemical reactions)

Adam A. L. Michalchuk et al., *Front. Chem.* **2012**, *9*, 685789.

Mechanical Actions

Classification of Mechanical Actions

(i.e., the stimuli which induce mechanochemical reactions)

e.g., shock wave

Adam A. L. Michalchuk et al., *Front. Chem.* **2012**, *9*, 685789.

Adam A. L. Michalchuk et al., *Front. Chem.* **2012**, *9*, 685789.

Mechanoreactors

Pestle and mortar

Households/labs

Duncan L. Browne et al., Chem. Sci. 2018, 9, 3080-3094.

Mechanoreactors

Dynamic stressing control (Challenging to predict/control)

Pestle and mortar

Households/labs

Duncan L. Browne et al., Chem. Sci. 2018, 9, 3080-3094.
Mechanoreactors

Dynamic stressing control (Challenging to predict/control)

Well-defined parameters tackling the dynamic stressing

Pestle and mortar

Ball milling

Households/labs

Batch scales

Duncan L. Browne et al., Chem. Sci. 2018, 9, 3080-3094.

Mechanoreactors

Duncan L. Browne et al., Chem. Sci. 2018, 9, 3080-3094.

Ball milling categories

<image>

Mixer Mill (most common) **Ball milling categories**

Duncan L. Browne et al., Chem. Sci. 2018, 9, 3080-3094.

Setting up a mechanochem reaction 1.0

Setting up a mechanochem reaction 1.0

Key variables

- Cavity/jar volume (V_J)
- Ball diameter (D_B)
- #balls
- Volume of reactants
- Milling/oscillating frequency (f)
- Time (t)
- Temperature (T)

Setting up a mechanochem reaction 1.0

Key variables

- Cavity/jar volume (VJ)
- Ball diameter (D_B)
- #balls
- Volume of reactants
- Milling/oscillating frequency (f)
- Time (t)
- Temperature (T)

Grinding agents/auxiliaries

lonic solids (IAG) non-ionic additives e.g., Polymer-assisted grinding (POLAG)

Setting up a mechanochem reaction 1.0

Facilitate particle diffusion, stabilize solid forms,...

Duncan L. Browne et al., Chem. Sci. 2018, 9, 3080-3094.

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

(Previously termed: "solvent drop grinding")

n parameter

(µL "solvent"/mg of mixture)

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

η parameter (μL "solvent"/mg of mix	Classification
0	Neat
<1 µL/mg	Liquid-assisted grinding (LAG)

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

η parameter (μL "solvent"/mg of mix	Classification (ture)
0	Neat
<1 µL/mg	Liquid-assisted grinding (LAG)
1-10 µL/mg	Slurry
>10 µL/mg	Homogeneous solution

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

Basic features

Is Mechanochemistry solvent-free?

Liquid-assisted grinding (LAG)

(Previously termed: "solvent drop grinding")

Duncan L. Browne et al., Green Chem., 2017, 19, 2798-2802; William Jones et al., Chem. Commun., 2002, 2372-2373.

Reaction Monitoring

How do we monitor a mechanochemical reaction?

Reaction Monitoring

How do we monitor a mechanochemical reaction?

In situ monitoring

X-Ray diffraction

Friščić T. et al., Nat. Chem. 2013, 5, 66-73.

Halasz I., Užarević, K. et al., Angew. Chem. Int. Ed. 2014, 53, 6193 –6197.

Friščić T. et al., J. Phys. Chem. Lett. 2015, 6, 4129–4140.

Halasz, I. Nat. Protoc. 2021, 16, 3492–3521.

Raman spectroscopy

X-Ray absorption spectroscopy

Emmerling F. et al., Chem. Commun., 2020, 56, 10329-10332.

Reaction Monitoring

Friščić T. et al., Nat. Chem. 2013, 5, 66–73.; Friščić T. et al., J. Phys. Chem. Lett. 2015, 6, 4129–4140.

Reaction Monitoring

Friščić T. et al., Nat. Chem. 2013, 5, 66–73.; Friščić T. et al., J. Phys. Chem. Lett. 2015, 6, 4129–4140.

Brief tutorial introduction on Mechanochem (generally)

History Mechanistic aspects Mechanical actions and mechanoreactors Reaction Monitoring

Why mechanochemistry? Mechanochemical vs. solution-based reactions Medicinal mechanochemistry

"Mechanochemistry 2.0" Mechanoredox

Why mechanochemistry?

Sustainable synthesis

Realise "impossible" reactions (i.e., not feasible in solution)

Complementary approach

Environmental Impact

Solvent-free cross-couplings
Mechanochemistry in Organic Synthesis Solvent-free cross-couplings Pd(OAc)₂ (2 mol%) Me XPhos (4 mol%) ,CI NaOH (2 equiv.) N. `N^{∕Ph} H `Ph Me 、 Na₂SO₄, 60 min Me Me ()91% (0.5 mmol) 87% (10 mmol)

Wei-Ke Su et al., Tetrahedron Lett. 2018, 59, 2277–2280.

Solvent-free cross-couplings

Solvent-free cross-couplings

Scanning electron microscopy of NHPh₂

Mechanochemistry in Organic Synthesis Solvent-free cross-couplings Ph Pd(OAc)₂ (5 mol%), PAd₃ (5 mol%) **`**Ph Br NaOtBu (1.5 equiv.) Ph~N^{Ph} H Ph 1,5-COD (0.20 µL/mg), air, 90 min Ph ()87% Average AY Scanning electron microscopy of NHPh₂ 2 balls 3 balls Time (min) 1 ball (a) before grinding 0 0 0 26 15 2 10 16 30

Mechanochemistry vs. solution-based reactivity

Duncan L. Browne Chem. Sci., 2018, 9, 3080–3094. Evelina Colacino, Andrea Porcheddu et al., ChemSusChem 2022, 15, e202200362.

Sukbok Chang et al., J. Org. Chem. 2013, 78, 11102–11109.

Bolm et al., Angew. Chem. Int. Ed. 2016, 55, 3781-3784.

Bolm et al., Angew. Chem. Int. Ed. 2016, 55, 3781-3784.

Bolm et al., Angew. Chem. Int. Ed. 2016, 55, 3781-3784.

Mechanochemistry vs. solution-based reactivity

Tomislav Friščić et al., Green Chem., 2014, 16, 1087-1092.

Mechanochemistry vs. solution-based reactivity

Tomislav Friščić et al., Green Chem., 2014, 16, 1087-1092.

Mechanochemistry vs. solution-based reactivity

<5%

Medicinal Mechanochemistry

Weike Su et al., Beilstein J. Org. Chem. 2018, 14, 786-795.

Medicinal Mechanochemistry

Weike Su et al., Beilstein J. Org. Chem. 2018, 14, 786-795.

Medicinal Mechanochemistry

Medicinal Mechanochemistry

Weike Su et al., Beilstein J. Org. Chem. 2018, 14, 786-795.

Medicinal Mechanochemistry

Weike Su et al., *Beilstein J. Org. Chem.* **2018**, *14*, 786–795.

Medicinal Mechanochemistry

Vjekoslav Štrukil et al., Molecules 2018, 23, 3163.

Medicinal Mechanochemistry

Vjekoslav Štrukil et al., *Molecules* **2018**, *23*, 3163.

Mechanochemistry in Organic Synthesis Medicinal Mechanochemistry 0 NΗ NO₂ \cap О Bi ΗŃ `ОН 'N Õ O_2N dantrolene nitrofurantoin Praziquantel bismuth salicylate

Weike Su et al., Adv. Synth. Catal. 2021, 363, 1246.

K. Su et al., CN111171027A

M. D. Levitt et al., *Dig. Dis. Sci.* **2000**, *45*, 1444–1446.

Mechanochemistry in Organic Synthesis Medicinal Mechanochemistry 0 NH NO₂ \cap () Bi ΗN `ОН N \cap O_2N dantrolene nitrofurantoin Praziquantel bismuth salicylate

Weike Su et al., Adv. Synth. Catal. 2021, 363, 1246.

K. Su et al., CN111171027A

M. D. Levitt et al., *Dig. Dis. Sci.* **2000**, *45*, 1444–1446.

Weike Su et al., Adv. Synth. Catal. 2021, 363, 1246.

Mechanochemistry in Organic Synthesis Medicinal Mechanochemistry 0 NH NO_2 \cap () HN ЮН N \cap O_2N dantrolene nitrofurantoin Praziquantel bismuth salicylate

Weike Su et al., Adv. Synth. Catal. 2021, 363, 1246.

K. Su et al., CN111171027A

M. D. Levitt et al., *Dig. Dis. Sci.* **2000**, *45*, 1444–1446.

Enzymatic-Medicinal Mechanochemistry

Mechanochemical Enzymatic Kinetic Resolution

Enzymatic-Medicinal Mechanochemistry

Mechanochemical Enzymatic Kinetic Resolution

(4K6G)

Enzymatic-Medicinal Mechanochemistry

Mechanochemical Enzymatic Kinetic Resolution

Enzymatic-Medicinal Mechanochemistry

Enzymatic-Medicinal Mechanochemistry

Enzymatic-Medicinal Mechanochemistry

Effect of LAG			
LAG	AY (S)-1/(R)-2	ee (S)-1	ee (R)-2
tAmOH	51/49	99	95
IPA	80/20	48	95
MeCN	65/29	65	95
Hexane	40/60	97	86

"Mechanochemistry 2.0" Mechanoredox

"Mechanochemistry 2.0"

Electrochemistry

Photochemistry

Thermal chemistry

Mechanochemistry

"Mechanochemistry 2.0"

Mechanochemistry "2.0"

Martinez, V. et al., Nat. Rev. Chem. 2023, 7, 51-65.

Thermo-mechanochemistry

Milling alone causes increase of T until equilibrium

Thermo-mechanochemistry

Thermo-mechanochemistry

Tube cooling & Cryo-milling

Krunoslav Užarević et al., ACS Sustainable Chem. Eng. 2019, 7, 16301-16309.

Thermo-mechanochemistry

Tube cooling & Cryo-milling

PID devices Up to 250 °C

Wiring

Milling vessel

Heating mantle

Thermo-mechanochemistry

Tube cooling & Cryo-milling

Krunoslav Užarević et al., ACS Sustainable Chem. Eng. 2019, 7, 16301–16309.

Photo-mechanochemistry

Photo-mechanochemistry

Photo-mechanochemistry

Photo-mechanochemistry

Photo-mechanochemistry

Electro-mechanochemistry

How to induce electric discharge?

Electro-mechanochemistry

How to induce electric discharge?

Piezoelectric Materials

Piezoelectric Materials

Piezoelectric Materials

Kuang-Sheng Hong, Huifang Xu, Hiromi Konishi, Xiaochun Li, J. Phys. Chem. Lett. 2010, 1, 997–1002.

Piezoelectric Materials

Piezoelectric Materials

Piezoelectric Materials

Kuang-Sheng Hong, Huifang Xu, Hiromi Konishi, Xiaochun Li, J. Phys. Chem. Lett. 2010, 1, 997–1002.

Mechanoredox Chemistry

Hajime Ito et al., Science, 2019, 366, 1500-1504.

Mechanoredox Chemistry

Mechanoredox Chemistry

Mechanoredox Chemistry

Mechanochemistry in Organic Synthesis Mechanoredox Chemistry N₂BF₄ BaTiO₃ (5 equiv.) air, 1 h CI CI ()0.3 mmol 15 equiv. 73% N_2^+ CI. CI N Boc O_2N **27%** e Me h+ **53%** CI **BaTiO**₃ NC MeO₂C -H+ () **50%** • 71% CI 1.1 g

Mechanochemistry in Organic Synthesis Mechanoredox Chemistry

BaTiO₃ Intact

BaTiO₃ 60 min, 30 Hz Mechanochemistry in Organic Synthesis Mechanoredox Chemistry

BaTiO₃ Intact

BaTiO₃ 60 min, 30 Hz

Standard conditions Ball temperature 30 °C

Mechanochemistry in Organic Synthesis Mechanoredox Chemistry Θ OTf Me Me BaTiO₃ (5 equiv.) CF₃ R# LAG Acetone, 3 h Me ĊF₃ ()Me 0.3 mmol 2 equiv. **67%** Me Θ OTf R Me

Hajime Ito et al., Angew. Chem. Int. Ed. 2020, 59, 22570–22576.

Hajime Ito et al., Angew. Chem. Int. Ed. 2020, 59, 22570–22576.

Mechanoredox Chemistry

Honggui Lv, Guoyong Fang et al., Angew. Chem. Int. Ed. 2022, 61, e202206420.

Koji Kubota, Hajime Ito et al., Angew. Chem. Int. Ed. 2023, 62, e202311531.

Mechanoredox Chemistry

Koji Kubota, Hajime Ito et al., Angew. Chem. Int. Ed. 2023, 62, e202311531.

Mechanoredox Chemistry

Koji Kubota, Hajime Ito et al., Angew. Chem. Int. Ed. 2023, 62, e202311531.

Mechanoredox Chemistry

Koji Kubota, Hajime Ito et al., Angew. Chem. Int. Ed. 2023, 62, e202311531.

Brief tutorial introduction on Mechanochem (generally)

History Mechanistic aspects Mechanical actions and mechanoreactors Reaction Monitoring

Why mechanochemistry? Mechanochemical vs. solution-based reactions Medicinal mechanochemistry

"Mechanochemistry 2.0" Mechanoredox

Further Reading

In situ monitoring

Raman spectroscopy

Angew. Chem. Int. Ed. 2014, 53, 6193 –6197.

Nat. Protoc. 2021, 16, 3492–3521.

X-Ray absorption spectroscopy

Chem. Commun., 2020, 56, 10329-10332.

DFT

MA: Maleic anhvdr BQ: Benzoquinone CH₂

Computational Studies

J. Phys. Chem. Lett. 2019, 10, 6455–6461.

MD

Chem. Sci., 2019, 10, 2924-2929.

Ball "Catalysis"

ACS Sustainable Chem. Eng. 2016, 4, 5, 2464–2469 Chem. Eur. J. 2020, 26, 12903 – 12911 Angew. Chem. Int. Ed. 2019, 58, 18942 –18947

Green Chem. 2009, 11, 1821-182

Electro-mechanochemistry electrical-discharge-assisted mechanical milling (EDAMM)

Spark-type milling

Glow-type milling

Calka, A., Wexler, D. *Nature* **2002**, *419*, 147–151.

Questions?