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ABSTRACT: Alkyl chlorides are bench-stable chemical feedstocks that remain among the most underutilized electrophile classes in
transition metal catalysis. Overcoming intrinsic limitations of C(sp3)−Cl bond activation, we report the development of a novel
organosilane reagent that can participate in chlorine atom abstraction under mild photocatalytic conditions. In particular, we
describe the application of this mechanism to a dual nickel/photoredox catalytic protocol that enables the first cross-electrophile
coupling of unactivated alkyl chlorides and aryl chlorides. Employing these low-toxicity, abundant, and commercially available
organochloride building blocks, this methodology allows access to a broad array of highly functionalized C(sp2)−C(sp3) coupled
adducts, including numerous drug analogues.

Nickel-catalyzed cross-electrophile coupling has become a
well-accepted and powerful strategy for the rapid

assembly of C(sp3)-rich drug-like molecules, permitting
convergent access to novel chemical space while introducing
desirable physicochemical and pharmacokinetic properties.1

Seminal studies by Weix, Gong, Reisman, and others have
established the viability and synthetic utility of this approach,
wherein a metal reductant such as Zn or Mn obviates the
requirement for prefunctionalized, and in many cases air-
sensitive, organometallic reagents.2,3 In 2016, our laboratory
disclosed an alternative strategy for the cross-electrophile
coupling of aryl bromides and alkyl bromides via the use of
silane-mediated bromine atom abstraction in combination with
dual nickel/photoredox catalysis.4,5 Under these robust and
mild conditions, a broad collection of C(sp2)−C(sp3) coupled
products can be prepared in high efficiency, and this
methodology has witnessed widespread application throughout
the pharmaceutical sector, driven primarily by its degree of
success with drug-like substrates.6 Following these initial
reports, a number of cross-electrophile protocols have
leveraged silane-mediated halogen atom abstraction7 in a
series of novel transformations that include alkyl−alkyl
coupling, trifluoromethylation, alkyl fluorination, and alkene
hydrosulfamoylation.8,9

Given the impact and widespread application of cross-
electrophile coupling technologies, it is remarkable to consider
that simple alkyl chlorides remain effectively unknown as viable
reaction partners,10 with the vast majority of systems utilizing
C(sp3)−bromides,11 iodides,12 and sulfonates.13 In compar-
ison, the use of organochlorides offers a host of chemical,
safety, and economic advantages that include (i) abundant and
diverse structural representation across both commercial and
natural sources;14 (ii) reduced toxicity (e.g., as carcinogens) in
comparison to most available electrophiles;15 (iii) chemical
stability, with respect to handling and tolerance in multistep
sequences;16 and (iv) low sourcing and production costs on
scale.17 In practice, however, the benefits arising from the
intrinsic chemical stability of alkyl chlorides have prohibited

their implementation in nickel-catalyzed cross-electrophile
couplings.18 Within the realm of metal reductant-mediated
nickel catalysis, strong C(sp3)−Cl bonds prevent the necessary
oxidative addition steps, while the accompanying reduction
potentials preclude outer-sphere electron transfer.19 Moreover,
within photoredox pathways, the low polarizability of the C−
Cl bond kinetically retards chlorine atom transfer in the silyl
abstraction event (a step that would otherwise be highly
exergonic).7c For example, an aliphatic bromide will typically
undergo halogen atom abstraction by supersilyl radical with a
rate that is several orders of magnitude faster than the
corresponding alkyl chloride (Figure 1). To overcome these
limitations, we recently sought to employ polarity matching as
a design element for the development of new silane reagents in
an effort to significantly lower the kinetic barrier to chlorine
atom transfer.20 Herein, we report the successful implementa-
tion of these ideals and present the first examples of nickel
cross-electrophile coupling using abundant, less toxic, and
inexpensive alkyl chlorides.

Design Plan. Given the inherent kinetic challenges
associated with radical-mediated C(sp3)−Cl activation, we
questioned whether we could induce an increased polarity-
matching effect between an unactivated C−Cl bond and the
silyl abstraction reagent via judicious selection of substituents
that would impose increased electron density on an open-shell
silicon species. Recognizing that π-donors are well-established
to increase the nucleophilic character of adjacent spin centers,
we hypothesized that the incorporation of a heteroatom (i.e.,
nitrogen)21 into the silane reagent might significantly improve
its polarity complementarity with C−Cl bonds and thereby
dramatically lower the barrier to chlorine atom abstraction.
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Moreover, we envisioned that a bulky N-alkyl substituent could
significantly improve the electron-releasing capacity of the
nitrogen donor via induction while simultaneously conferring
hydrolytic stability to the labile Si−N bond.22 To this end, we
disclose the discovery and development of novel organosilicon
reagents that fulfill these design criteria, and we highlight the
value of silane 3, a 1-adamantylamine-substituted supersilyl
agent that is bench-stable, inexpensive, and broadly useful for
photocatalytic alkyl chloride activation.
A proposed mechanism for this new cross-chloride coupling

is described in Figure 2.23 Upon irradiation with visible light,
the photocatalyst [Ir(ppy)2(dtbbpy)](PF6) (1) is known to
access the long-lived triplet excited state 2.24 Central to our
reaction design, we envisioned that this mildly oxidizing
species (E1/2

red[*IrIII/IrII] = +0.76 V vs saturated calomel
electrode (SCE) in N,N-dimethylacetamide (DMA)/tert-amyl
alcohol; see Supporting Information (SI)) should engage a
suitable silane reagent (3) in single-electron transfer (SET) to
furnish the reduced IrII complex 4 and N-centered radical 5.

Subsequent radical aza-Brook rearrangement25 would unveil
the electron-rich α-amino silicon-centered radical 6, which is
poised to readily abstract a chlorine atom from an aliphatic
chloride 7 to furnish the corresponding alkyl radical 8. At the
same time, low-valent Ni0 catalyst 9 is expected to undergo
oxidative addition into aryl chloride 10 to afford NiII-aryl
intermediate 11. Oxidative radical capture of the open-shell
alkyl species 8 would deliver NiIII-(alkyl)(aryl) complex 12,
which upon reductive elimination should release the desired
C(sp2)−C(sp3) product 13. Finally, single-electron reduction
of the resulting NiI intermediate 14 by the IrII species 4
(E1/2

red[IrIII/IrII] = −1.38 V vs SCE in DMA/tert-amyl alcohol)
closes both catalytic cycles, simultaneously regenerating the
ground-state photocatalyst 1 and the Ni0 catalyst 9.

Optimization and Reaction Scope. Following an
extensive survey of various supersilane derivatives, catalysts,
and solvents, we determined that under optimal conditions
(photocatalyst 1 (1 mol %), NiCl2·bim

26 15 (5 mol %), and
1,1,3,3-tetramethylguanidine (TMG) as base) the 1-adamantyl
aminosilane reagent 3 facilitates a cross-electrophile coupling
mechanism that provides the desired product in excellent yield
(Table 1, entry 1, 73% yield). The highly crystalline
aminosilane reagent 3 can now be purchased (MilliporeSigma,
#915319) or be easily prepared in a single step from
commercial materials on a decagram scale (see SI), and all
other reagents and catalysts are commercially available.
Importantly, reagent 3 was found to have a relatively low
oxidation potential (Epa = +0.86 V vs SCE in DMA/tert-amyl
alcohol), which permits activation by excited photocatalyst 2
via SET under mild conditions, consistent with excited-state
potentials and Stern−Volmer quenching experiments (see
Figure S8). Subsequent rearrangement pathways27 were
interrogated through a series of computational studies using

Figure 1. Cross-electrophile coupling of organic chlorides.

Figure 2. Design plan for cross-electrophile coupling.
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density functional theory, which established the feasibility of
our proposed aza-Brook rearrangement (see Figure S9 and
accompanying discussion). The tert-butylamine-derived super-
silane performs comparably (entry 2), but due to operational
difficulties in handling this waxy solid, the crystalline 1-
adamantylamine derivative (see Figure S2 for X-ray structure)
was selected as the reagent of choice. Consistent with our
design hypothesis, the introduction of less electron-rich amines
resulted in substantially diminished reaction efficiencies
(entries 3 and 4), while silane reagents previously used in
photoredox cross-electrophile coupling (i.e., supersilanol and
supersilane) were ineffective at alkyl chloride activation under
all conditions employed (entries 5 and 6). Decreased yields
were also observed when DMA was used without a cosolvent
(entry 7) or when NiCl2·dtbbpy was used in lieu of 15 (entry
8). Control experiments established that the iridium photo-
catalyst, light, aminosilane reagent, and nickel catalyst were all
necessary for product formation (entries 9−12).
With these optimized conditions in hand, we directed our

studies toward exploring the scope of this organochloride
cross-electrophile coupling. As summarized in Table 2, we
were delighted to find that our silyl-radical activation approach
served as a broadly applicable platform for coupling a wide
array of alkyl chlorides and aryl chlorides. With respect to the

alkyl chloride coupling partner, a variety of five-, six-, and
seven-membered cyclic systems performed well (16−20, 66−
77% yield). Secondary acyclic alkyl chlorides, as well as
hindered bridged bicyclic and neopentyl substrates, were also
found to be competent electrophiles (21−23, 66−77% yield).
While halogen atom abstraction from primary alkyl chlorides
was anticipated to be kinetically challenging based on literature
precedent,7c we were pleased to find that a number of
functionalized primary substrates could be successfully
engaged in our coupling methodology. In particular, alkyl
chloride partners containing cyclic and acyclic ethers can be
employed to access the desired C(sp2)−C(sp3) adducts in
good yield (24 and 25, 72% and 57% yield, respectively).
Gratifyingly, electrophilic moieties, such as esters, nitriles, and
ketones, were also well-tolerated under our standard protocol
(26−28, 58−62% yield). Moreover, alkyl fragments incorpo-
rating protected functional groups were successfully intro-
duced, including primary alcohols, aldehydes, and vicinal diols
(29−31, 61−74% yield). Notably, aliphatic substrates
containing nitrogen heteroarenes can also be coupled with
useful efficiencies (e.g., 32, 64% yield).
Next, we turned our attention to the scope of the aryl

chloride coupling partner. Our investigations revealed that
both electron-rich and electron-deficient chlorobenzene
derivatives could be employed to provide the corresponding
adducts in good yield (33−36, 65−75% yield). Given the
abundance of heteroarene substructures in pharmaceutical
agents,28 we were delighted to find that 2-, 3-, and 4-
chloropyridines, as well as extended aromatic systems such as
quinoline, could be readily alkylated with good efficiency (37−
40, 61−72% yield). Pyrimidines with diverse substitution
patterns were also competent aryl electrophiles, enabling
access to diazine products (41 and 42, 57% and 62% yield,
respectively). In addition, we were pleased to find that
nitrogen-abundant heteroaryl fragments, such as azaindole,
pyrrolopyrimidine, and azaindazole, were combined with the
parent alkyl chloride scaffold without difficulty (43−45, 62−
73% yield). Five-membered heterocycles such as pyrazole
could also be coupled with good yield using this new protocol
(46, 67% yield). Perhaps most notable, a number of heteroaryl
chlorides could be readily employed for which the correspond-
ing aryl bromides are not commercially available (designated
by ★), illustrating the immediate utility of this approach in
preparing value-added products from synthetically accessible
precursors (47−50, 60−68% yield). Finally, in an effort to
demonstrate the applicability of our method to the late-stage
elaboration of drug-like molecules, we tested several known
medicinal agents and drug candidates containing aryl chlorides
in this new transformation. As shown in Table 3, we were
delighted to find that the desired C(sp2)−C(sp3) adducts
could be formed in good yield (51−54, 53−76% yield),
illustrating the compatibility of our reaction with medicinally
relevant functional groups such as triazoles, amides, sulfones,
and carbamates. These results further support the generic
utility of our method for application in medicinal chemistry
settings.29

In summary, we have developed the first general cross-
electrophile coupling of unactivated alkyl chlorides and aryl
chlorides via the merger of nickel and photoredox catalysis.
Our reaction conditions enable the formation of a broad range
of C(sp2)−C(sp3) coupled products from widely abundant and
bench-stable organic chlorides, including several drug deriva-
tives. In particular, our approach has employed a novel 1-

Table 1. Control Reactions of Optimized Conditionsa

entry conditions silane yieldb

1 as above 3 73%
2 as above TMS3SiNH(

tBu) 72%
3 as above TMS3SiNH(

iPr) 45%
4 as above TMS3SiNH(

nBu) 30%
5 as above TMS3SiOH 0% (100%)c

6 as above TMS3SiH 0% (77%)c

7 DMA as solvent 3 60%
8 4,4′-dtbbpy as ligand 3 20%
9 no photocatalyst 3 0%
10 no nickel catalyst 3 0%
11 no silane none 0%
12 no light 3 0%

aPerformed with silane reagent (1.2 equiv), TMG (3.0 equiv), aryl
chloride (0.1 mmol), and alkyl chloride (2.0 equiv) in DMA/tert-amyl
alcohol (3:1, 0.5 M) without fans. bYields determined by 1H NMR
using mesitylene as internal standard. See SI for experimental details.
cRecovery of alkyl chloride in parentheses. bim, 2,2′-biimidazole;
TMG, 1,1,3,3-tetramethylguanidine. DMA, N,N-dimethylacetamide.
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Table 2. Scope of Silane-Mediated Cross-Electrophile Coupling of Unactivated Alkyl Chlorides and Aryl Chloridesa

aAll yields are isolated. Photocatalyst 1 (1 mol %), NiCl2·bim (5 mol %), aminosilane reagent 3 (1.2 equiv), TMG (3.0 equiv), aryl chloride (0.5
mmol), and alkyl chloride (1.0 mmol) were irradiated by blue LEDs in DMA/tert-amyl alcohol (3:1, 0.5 M) without fans, equilibrating at 50−55 ̊C.
b4,4′,5,5′-Tetramethyl-2,2′-biimidazole as ligand. c3 mol % Ni catalyst and 0.6 mol % photocatalyst. ddr >20:1. e10 mol % nickel and 2 mol %
photocatalyst. f2,2′-bibenzimidazole as ligand. gBTMG (3.0 equiv) as base. h2.5 equiv 3. iDMA (0.5 M) as solvent. jDMA/tert-amyl alcohol (3:1,
1.0 M) as solvent. k[Ir(dF(H)ppy)2(dtbbpy)](PF6) as photocatalyst. lDMA/tert-amyl alcohol (1:2, 0.3 M) as solvent. m[Ir(dF(Me)-
ppy)2(dtbbpy)](PF6) as photocatalyst.
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adamantyl aminosilane 3 that exploits polarity-matching effects
to achieve the kinetically challenging halogen atom abstraction
from unactivated alkyl chlorides. Mechanistic studies exploring
the activation of the reagent and subsequent chlorine atom
abstraction are ongoing and will be reported in due course.
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