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ABSTRACT: Quaternary carbons are ubiquitous in bioactive molecules; however, synthetic methods for the construction of this
motif remain underdeveloped. Here, we report the synthesis of quaternary carbons from tertiary alcohols, a class of structurally
diverse, bench-stable feedstocks, via the merger of photoredox catalysis and iron-mediated Sy2 bond formation. This alcohol—
bromide cross-coupling is enabled by a novel halogen-atom transfer (XAT) reagent, which is the first reductively activated XAT
reagent to be reported. A wide variety of sterically congested quaternary products can be accessed through this mild and practical
protocol including products derived from both alkylation and benzylation of tertiary fragments. We further demonstrate the
synthetic utility of this method through the expedited synthesis of a liver receptor agonist and through a two-step conversion of
ketones and esters to quaternary products, which enables the modular control of up to three of the four substituents on a quaternary

center.

Quaternary carbons impart favorable properties to

bioactive molecules including metabolic stability,
conformation rigidity, and binding selectivity,"”” however,
synthetic methods for the construction of this valuable motif
remain limited.”~> By contrast, tertiary alcohols are widely
available, structurally diverse synthons that can be readily
accessed from a variety of precursors including ketones, esters,
alkenes, and epoxides. Given this disparity in accessibility, a
synthetic method for the direct conversion of tertiary alcohols
to quaternary carbons would be highly enabling (Figure 1).
Such a transformation could be particularly impactful in the
pharmaceutical industry, where most top-selling small-mole-
cule therapeutics that contain quaternary carbons are currently
synthesized from starting materials in which this motif is
preinstalled.”® Nevertheless, a general method for the synthesis
of quaternary carbons from tertiary alcohols remains elusive.”

Recently, our lab and others have demonstrated that
metallaphotoredox catalysis can enable facile quaternary
carbon synthesis via iron- and nickel-mediated radical sorting
mechanisms.”~"" In these methods, a photocatalyst induces the
mild, simultaneous generation of primary and tertiary alkyl
radicals, while a transition metal catalyst selectively binds the
primary radical due to the greater strength of the M—C bond.
Formation of the key C—C bond then proceeds via
bimolecular homolytic substitution (S;2) between a tertiary
radical and the primary metal—alkyl species. This Sy2
mechanism, a single-electron analog of the classic Sy2
mechanism,'> obviates the need for the tertiary radical to
interact directly with the metal catalyst, avoiding deleterious
side reactions that impede quaternary carbon synthesis via
traditional cross-coupling methodologies.'* ™"

We recognized that this radical sorting strategy could
provide a method for the synthesis of quaternary carbons from
tertiary alcohols. In particular, we sought to develop a cross-
coupling of tertiary alcohols and primary alkyl bromides. Alkyl
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bromides are widely commercially available, inexpensive
feedstock chemicals, and thus, they represent an optimal
source of primary alkyl fragments for this transformation.

To facilitate radical deoxygenation of the tertiary alcohol
substrate in the proposed cross-coupling reaction, we turned to
a benzoxazolium-based reagent, termed “deoxazole” or “NHC”,
recently disclosed by our lab."” NHC activation of alcohols
proceeds in situ under mild conditions, avoiding the additional
purification steps required for other radical deoxygenation
protocols.'® The NHC reagent has been leveraged in synthetic
methods for arylation,17 :111<ylation,7b’10’19 and trifluoro-
methylation,” although the scope of these transformations
for quaternary products is typically limited due to reliance on
inner-sphere reductive elimination mechanisms.'’~** We
hypothesized that the merger of NHC activation and Sy2
catalysis could facilitate a robust and general method for
quaternary carbon synthesis.

We envisioned that the proposed alcohol—bromide cross-
coupling could be achieved according to the design plan shown
in Figure 2. First, tertiary alcohol substrate 1 condenses with
benzoxazolium salt (NHC) under mildly basic conditions to
form the activated NHC alcohol adduct 2. Visible-light
excitation of the photocatalyst (PC) 2,4,5,6-tetrakis(9H-
carbazol-9-yl) isophthalonitrile (4CzIPN, 3) generates a
long-lived, triplet excited state 4 (¢ = S.1's, E;), = +1.35 V
vs saturated calomel electrode (SCE) in MeCN).*' Excited-
state complex 4 can engage in reductive quenching by NHC-
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Figure 1. Synthesis of quaternary carbons from tertiary alcohols via
bimolecular homolytic substitution (Sy2).

alcohol adduct 2 (E +1.17 V)" to generate reduced
photocatalyst § (E;;, = —1.21 V)*' and a transient amine
radical cation, which undergoes rapid deprotonation and
subsequent f-scission to furnish an aromatized byproduct 6
and tertiary alkyl radical 7. Concurrently, reduced photo-
catalyst S must activate the primary alkyl bromide 8 to furnish
the primary alkyl radical 9 and regenerate photocatalyst 3.
Capture of alkyl radical 9 by iron(II) catalyst 10 yields the key
iron(Ill)—alkyl intermediate 11, which is poised for Sy2
substitution by tertiary alkyl radical 7 to form the desired
quaternary product 12 and reconstitute the iron catalyst 10.°

From the outset, we recognized that the proposed reductive
bromide activation step presented a significant obstacle to our
desired transformation. Indeed, direct alkyl bromide reduction
occurs at extreme potentials (E;, ® —2.5V vs SCE)** that are
inaccessible to conventional photocatalysts.”® Prior work has
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Figure 2. Proposed reaction design (top) and design of a reductively
activated halogen atom transfer (XAT) reagent (bottom).

demonstrated that alkyl bromides can be converted to the
corresponding alkyl radical via halogen-atom transfer (XAT) to
nucleophilic silicon or a-amino radicals;** however, such XAT
reagents are typically activated through single-electron
oxidation.””~>” No reductively activated analogue has yet
been reported.

To this end, we designed a class of N-siloxyphthalimide
reagents, [Si] (Figure 2, bottom; Table 1). One-electron
reduction of the [Si] reagent initiates N—O bond scission,
leading to concurrent formatlon of phthalimide anion and an
oxygen-centered radical 13.”° Subsequent radical Brook
rearrangement reveals a silicon-centered radical 14, which
can engage in rapid XAT (k ~ 10° M~ s7') with an alkyl
bromide substrate 8 to form the corresponding alkyl radical
9.%° Gratifyingly, initial studies revealed that the [Si] reagents
are capable of activating both alkyl and aryl bromides upon
photocatalytic single-electron reduction (Figure S5).

We next applied our reductively activated XAT reagents to
the proposed cross-coupling reaction using tertiary alcohol 1
and primary bromide 15 (Table 1). Following extensive
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Table 1. Optimization of Reductively-Activated Halogen-Atom Transfer Reagent”

NHC, pyridine

TFT (0.2 M), =25 C°, 2 h;
[Si] (2 equiv.), CsOAc (3 equiv.)

" on N
o N o
SRS 001
N
Boc”
tertiary alcohol (1) primary bromide (15)
SiMe; SiEtg SiEtg
/ oL/ oL/
Phth” Si_ Phth”” Si_ Phth” " si__
/  “SiMeg /_ "SiEtg / “tBu
SiMe; SiEts tBu
[Sil-1 [Si]-2 [Si}-3
silane sterics >
0
o] o) )
SiEty SiEt, SiEts
PN O/ N ™
N i N Si_ SN
/> tBu /" tBu tBy TBY
tB F tBu
(@] 0 O
F F O:N
[Sil-4 [Si]-5 [Si]-6
< |reduction potentiall

5 mol% Fe(OEP)CI, 5 mol% 4CzIPN
MeCN/t-AmOH (1:1, 0.05 M)
blue LEDs, 16 h, rt

Me H
3
BOC/ N m

quaternary sp’-sp® coupled product (16)

entry silane reagent yield
{ SiEt,
1 none 6% PNV
N i
) / tBu
2 [Si]-1 17% F FBu
(]
3 [Si]-2 12% F
4 [Si]-3 60% ) ] ’
air-stable, crystalline solid
5 [Si]-4 67%
decagram-scale synthesis
6 [Si]-5 71%
. alkyl or aryl bromide activation
7 [Si]-6 0%

“Performed with bromide (0.05 mmol, 1.0 equiv), alcohol (2.5 equiv), NHC (2.8 equiv), pyridine (2.8 equiv), silane reagent ([Si], 2.0 equiv), and
CsOAc (3.0 equiv). Yields determined by HPLC analysis with 1,3,5-trimethoxybenzene as an internal standard. See Supporting Information for

experimental details.

optimization (Supporting Information, Section 4; Table 1), we
found that alcohol 1 (2.5 equiv) underwent condensation with
NHC (2.8 equiv) and pyridine (2.8 equiv) in a,a,a-
trifluorotoluene (TFT, 0.2 M), followed by cross-coupling
with primary bromide 15 in the presence of CsOAc (3.0
equiv), reductively activated XAT reagent ([Si]-S, 2.0 equiv),
4CzIPN (5 mol %), Fe(OEP)CI (5 mol %; OEP = 2,3,7,8,12,
13,17,18-octaethyl-21H,23H-porphine) in acetonitrile/tert-
amyl alcohol (1:1, 0.05 M) to afford the desired quaternary
product 16 in good yield (71% yield) after 16 h of irradiation
(450 nm) in an integrated photoreactor.” Control reactions
revealed all reaction components to be necessary for optimal
yield of product 16 (Figure S7). Notably, no reaction is
observed in the absence of light, and the reaction yield
decreases substantially in the absence of XAT reagent [Si] (6%
yield).

The structure of XAT reagent [Si] has a substantial impact
on the yield of product 16 (Table 1). In particular, we found
that increasing the steric bulk at the central silicon atom from
R—Si(SiMe;); ([Si]-1) to R—Si(t-Bu),(SiEt;) ([Si]-3)
resulted in an increase in the yield of product 16 from 17%
to 60%. We attribute this effect to the enhanced stability of
[Si]-3 with respect to base-mediated decomposition (Figure
S6).

Tuning the reduction potential of reagent [Si] via
functionalization of the N-hydroxyphthalimide fragment also
impacts the product yield. As shown in Table 1, reagents with
either one ([Si]-4, E,.= —1.33 V vs SCE in MeCN) or two
([si]-s, E,=-130 V) fluoride substituents outperformed the
unsubstituted analogue ([Si]-3, E,.=-139 V). This is likely
due to competition between the reduction of the XAT reagent
and the Fe''(OEP) catalyst (E, ,(Fe'/Fe') = —1.28 V), which
becomes less favorable as the reagent becomes easier to reduce.
Interestingly, reagents with more strongly electron with-
drawing substituents such as a nitro group ([Si]-6, E, =
—0.75, — 1.18 V) were significantly less effective (0% yield).
We attribute this phenomenon to a decrease in the rate of N—

O bond scission for [Si]-6, as indicated by an increase in the
reversibility of cyclic voltammetry measurements (Figure S4).

The optimal reagent [Si]-S is an air-stable, crystalline solid
that can be synthesized at the decagram scale in only three
steps from commercial materials (Supporting Information,
Section 2). Compound [Si]-5 is the first reductively activated
XAT reagent that has been developed for conversion of alkyl or
aryl bromides to the corresponding radical species. As such, we
believe that this reagent will find widespread application in
photoredox catalysis and organic methodology development
generally.

With the optimized conditions in hand, we next explored the
scope of this reaction (Table 2). First, we examined a range of
primary alkyl bromides with both cyclic and acyclic tertiary
alcohol partners (17—25). We were pleased to find that
medicinally relevant heterocycles were well-tolerated including
benzoxazolinone (17, 67% vyield), benzimidazole (23, 44%
yield), and pyridine (25, 56% yield). Additionally, substrates
bearing tertiary anilines (19, 61% yield) and free N—H bonds
(21, 63% vyield; 22, 71% yield) were converted to quaternary
products with good efficiency.

Using this method, a wide variety of benzyl bromides were
readily coupled with both cyclic and acyclic tertiary alcohols
(26—32). Control reactions revealed that benzyl bromide
substrates do not require activation via silane reagent [Si]-$
(Figure S8) and can instead be activated via direct photo-
catalyst mediated reduction to furnish comparable yields of
quaternary product. Benzyl bromides bearing electron-
donating substituents, such as protected amines (26, 63%
yield), and electron-withdrawing substituents, such as trifluor-
omethyl (29, 83% yield), ester (31, 74% yield), and fluoride
(32, 66% yield), all displayed good to excellent yields.

Notably, this method can be used to couple substrates
containing aryl bromides (27, 66% vyield) and (hetero)aryl
chlorides (24, 62% yield; 32, 66% yield), including activated 2-
pyridyl chlorides (25, 56% yield), which have the potential to
act as vectors for subsequent derivatization. This capability
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Table 2. Scope of Alcohol—Bromide Cross-Coupling”
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N Me Me N Me Me
Boc” Boc”
29, 83% yield 30, 72% yield 31, 74% yield 32, 66% yield ©!
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Me
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e
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H O Boc H O Boc N o Boc”
33, 67% yield 34, 62% yield? 35, 52% yield® 36, 74% yield?
Me
Me  Me Me Me CF3
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R Q
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A N 8 Me>|/\ﬁs/ 8 Boc
| | Me ~N
~ Me Me Me N o Me  Me
FsC N H Me Me
45, 49% yield 46, 51% yield? 47, 68% yield 48, 56% yield?

“Reactions were performed on a 0.5 mmol scale with alcohol (2.0—2.5 equiv), NHC (1.1 equiv. with respect to alcohol), pyridine (1.1 equiv. with
respect to alcohol), TFT (0.2 M), 2 h, — 25 °C; alkyl bromide (1.0 equiv), [Si]-5 (2.0 equiv. for alkyl bromides; 0.0 equiv. for benzyl bromides),
CsOAc (2 5-3.0 equiv), 4CzIPN (S mol %), Fe(OEP)Cl (2.5—5.0 mol %), 1:1 MeCN/t-AmOH (0.05 M), blue LEDs, 9—16 h. All yields are
isolated. “3.0 equiv. alcohol. “3.5 equiv. alcohol. /4.0 equiv. alcohol.

D https://doi.org/10.1021/jacs.3c05405
J. Am. Chem. Soc. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/10.1021/jacs.3c05405?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.3c05405?fig=tbl2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.3c05405?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of the American Chemical Society

pubs.acs.org/JACS

Communication

Table 3. Modular Access to Quaternary Carbons via Alcohol—Bromide Cross-Coupling and Expedited Synthesis of Bioactive

Molecules

modular construction of all-carbon quaternary centers
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published synthesis (ref. 33)

CO,Me
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Reduction Wittig
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+ Me,N
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commercial (55)

2 steps from
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MeZN)D\ J

liver receptor agonist (57)

40% yield

4 total steps

highlights an advantage of Sy2-based cross-coupling methods
compared to traditional strategies that rely on low-valent metal
catalysts, which rapidly react with such aryl electrophiles.

We next explored the scope of this transformation with
respect to tertiary alcohols using both primary alkyl and benzyl
bromide partners (33—48). To investigate steric tolerance, we
examined piperidine substrates bearing ipso methyl (33, 67%
yield), ethyl (34, 62% yield), benzyl (35, 52% yield), and iso-
propyl (36, 74% vyield) substituents and observed good to
moderate yields. This compares favorably with alternative
cross-coupling methods for quaternary carbon synthesis, which
typically require that at least one ipso substituent be a methyl
group for a substrate to be coupled with synthetically useful
yields.'”" "¢ Notably, our method can also furnish products
bearing contiguous quaternary carbons (37, 43% yield), a
motif that presents a significant challenge in bioactive molecule
synthesis.”

Additionally, we found that tetrahydronaphthalene (38, 59%
yield), &-lactone (39, 64% yield), and tetrahydropyran (43,
50% yield) derived substrates coupled in good to moderate
yields. Our method can also be used to form quaternary
carbons in five-membered ring backbones including cyclo-
pentane (40, 85% yield) and pyrrolidine (41, 71% yield).
Acyclic tertiary alcohol substrates also coupled in good to
moderate yields (45—48, 49—68% yield) including tert-butanol
(46, 51% yield), providing a nontraditional approach to the
installation of tert-butyl groups.

Limitations of this cross-coupling protocol include secon-
dary alkyl or benzyl bromides, which likely perform poorly due
to decreased efficiency of the key Sy2 substitution, analogous
to trends observed for Sy2 reactions. Nucleophilic moieties,
such as pyridines without ortho substituents, also diminish the
reaction yield (see Supporting Information, Section 8). In
addition, low yields were observed for tertiary azetidinols (44,
28% yield), potentially due to the decreased nucleophilicity of
the corresponding radical.

To further illustrate the utility of this alcohol—bromide
cross-coupling, we subjected ketone- or ester-containing
substrates to a two-step alkylation sequence (Table 3).
Compounds were first converted to the corresponding tertiary
alcohols via Grignard reaction (49, 51, 53; 85—95% yield),
then subjected to alcohol—bromide cross-coupling to yield
quaternary products (50, 52, S4; S0—66% yield). Notably, this
alkylation sequence enables modular control of up to three of
the four substituents on a quaternary carbon in only two steps.
Furthermore, it provides rapid access to the gem-dimethyl
motif, common in small-molecule therapeutics,” from ester-
containing substrates, an enabling disconnection that allows
biomass-derived building blocks to be readily converted to
quaternary carbon-containing pharmacores.

Finally, we applied our cross-coupling technology to the
expedited synthesis of 57, which is a liver receptor agonist.
Compound 57 was previously synthesized in eight linear
steps.”” In the published route, the quaternary center is
installed in the first step via enolate methylation, and then four
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additional steps are required to convert the methyl group to a
primary alkyl chain, representing a significant synthetic burden
for analogue exploration. We envisioned that the quaternary
center could instead be installed in the final step via alcohol—
bromide cross-coupling, thus allowing for a convergent
synthesis. Gratifyingly, tertiary alcohol 55 and primary
bromide 56 could be prepared in one and two steps from
commercial materials, respectively, and these fragments were
coupled in moderate yield, furnishing §7 in four total steps.

In summary, we report here a method for the synthesis of
quaternary carbons from tertiary alcohols and primary
bromides. This cross-coupling reaction is enabled by a novel
reagent, [Si]-S, which is the first reductively activated reagent
for halogen-atom transfer (XAT). This synthetic methodology
enables rapid access to sterically congested quaternary centers
from a structurally diverse range of alcohols and bromides. The
utility of this transformation is highlighted through the
modular synthesis of quaternary products from ketone or
ester feedstocks and the expedited synthesis of a liver receptor
agonist. Additional studies on Sy2-mediated cross-coupling
reactions and applications of reductively activated XAT
reagents are ongoing in our laboratory.
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