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ABSTRACT: The coupling of carboxylic acids and amines to form amide linkages is the most commonly performed reaction in the
pharmaceutical industry. Herein, we report a new strategy that merges these traditional amide coupling partners to generate
sulfonamides, important amide bioisosteres. This method leverages copper ligand-to-metal charge transfer (LMCT) to convert
aromatic acids to sulfonyl chlorides, followed by one-pot amination to form the corresponding sulfonamide. This process requires no
prefunctionalization of the native acid or amine and extends to a diverse set of aryl, heteroaryl, and s-rich aliphatic substrates.
Further, we extend this strategy to the synthesis of (hetero)aryl sulfonyl fluorides, which have found utility as “click” handles in
chemical probes and programmable bifunctional reagents. Finally, we demonstrate the utility of these protocols in pharmaceutical
analogue synthesis.

Carboxylic acids and amines have high structural diversity,
synthetic utility, and broad availability from both natural

and commercial sources.1,2 These two functionalities are the
traditional partners of the amide coupling, the most commonly
performed reaction by medicinal chemists.3,4 Amides, however,
can be metabolically labile toward hydrolysis and may not
possess the ideal binding properties for a given target.5 To
address these shortcomings, several amide bioisosteres have
been identified that retain similar geometric properties to
amides while displaying modified metabolic stability or binding
affinity.6

One notable amide isostere is the sulfonamide, which
features similar geometry, an additional hydrogen bond
acceptor (HBA), improved hydrolytic stability, and increased
polar surface area (PSA).7 These features can lead to dramatic
improvements in physiochemical properties or binding affinity,
with examples showing nearly 200-fold increases in binding
with no other structural modification.8 Beyond medicinal
chemistry, sulfonamides have been used in place of amides to
tune the gelation properties of physical gels.9 Despite high
interest, the preparation of sulfonamide analogues typically
necessitates de novo synthesis of a sulfonyl chloride partner or
a multistep sequence proceeding through high-energy
diazonium intermediates.8,10 Therefore, a method for the
expedient synthesis of sulfonamides from the same partners
used in conventional amide coupling would accelerate the
preparation of amide analogues in drug discovery campaigns.
We envisioned the synthesis of sulfonamides from aryl

carboxylic acids and amines could be achieved through an
initial decarboxylative chlorosulfonylation, followed by a one-
pot sulfonamide formation via the addition of an amine
(Figure 1). This strategy confers several benefits. First, the
reaction between amines and sulfonyl chlorides occurs rapidly
and is robust in scope.11 Second, sulfonyl chlorides themselves
are valuable synthetic intermediates and can be used as a

lynchpin functionality toward the synthesis of diverse sulfur
containing functionalities, such as sulfonates,12 sulfones,13

sulfinates,14 and thiophenols.15 Moreover, we anticipated that a
decarboxylative halosulfonylation strategy would extend to aryl
sulfonyl fluorides, valuable “click” handles for sulfur(VI)−
fluoride exchange16,17 with broad utility as chemical probes,18

programmable bifunctional reagents,19 and versatile functional
handles.20 While several methodologies have been developed
in recent years for accessing aryl sulfonyl halides from aryl
boronic esters,21 halides,22 diazoniums,23 and several sulfur-
containing functionalities,24 a direct approach beginning from
aryl carboxylic acids has not been reported to date.17

Despite its appeal, the development of a versatile
decarboxylative halosulfonylation protocol presents several
challenges. While the decarboxylative halosulfonylation of
related aliphatic systems has been reported,25 aromatic
decarboxylation is significantly more challenging.1 Recently,
both Ritter and our group have demonstrated that copper
ligand-to-metal charge transfer (LMCT) is a mild and general
approach for traditionally challenging aromatic decarboxylative
functionalizations including halogenation,26,27 borylation,28

hydroxylation,29 and sulfoximination.30,31 Notably, our lab
rendered this strategy catalytic in copper by including a single
electron oxidant.27,28 Given the broad precedent for engaging
aryl radicals with SO2 to forge C−S bonds,32 we anticipated
that a Cu-LMCT strategy could be successful for catalytic
decarboxylative halosulfonylation. Additionally, we expected
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that the mild nature of LMCT decarboxylation could allow a
highly efficient one-pot conversion of sulfonyl chlorides to
sulfonamides, circumventing the isolation of highly reactive
electrophiles. Herein, we describe the successful development
of a copper-catalyzed aromatic decarboxylative halosulfonyla-
tion, expediently accessing sulfonamides from aryl carboxylic
acids and amines.
We propose the general design plan for decarboxylative

halosulfonylation, as detailed in Figure 2. First, a Cu(II)
catalyst combines with an in situ generated aryl carboxylate,
providing a photoactive Cu(II) carboxylate. Upon irradiation,
this complex can undergo LMCT, inducing Cu−O bond
homolysis and furnishing an aroyloxy radical as well as a
reduced Cu(I) species. We hypothesize these two species can
recombine, regenerating the ground state Cu(II) carboxylate
complex and suppressing competitive, deleterious bimolecular
reaction pathways.33 The aroyloxy radical can also undergo
decarboxylation, furnishing the desired aryl radical. Radical
capture by SO2 would then forge the desired C(sp2)−S bond
and generate an aryl sulfonyl radical.32 We propose that this
sulfur-centered radical could react with various electrophilic
halogenation reagents to afford the desired aryl sulfonyl halide
products. Finally, a suitable single electron oxidant can oxidize
Cu(I) to Cu(II), closing the catalytic cycle.
We began optimization studies by attempting the decarbox-

ylative chlorosulfonylation of 4-fluorobenzoic acid. By employ-
ing Cu(MeCN)4BF4 as the most generally successful copper

catalyst, 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate
(NFTPT) as the single electron oxidant, 1,3-dichloro-5,5-
dimethylhydantoin (DCDMH) as a chlorine atom source, and
the integrated photoreactor (IPR) as a high intensity source of
365 nm light,34 we observed a 2% yield of the desired sulfonyl
chloride product with sodium metabisulfite as the SO2 source
(Table 1, entry 8). While other SO2 surrogates from the
literature were similarly unsuccessful,35 super stoichiometric
loadings of copper did lead to improved yield in some cases
(see SI for experimental details). Recognizing the sensitivity of
Cu-LMCT decarboxylation to the Lewis basic functionality
present in each of these surrogates, we sought to employ SO2
directly by evaluating stock solutions of SO2. We were
delighted to find that by using a solution of SO2 in
acetonitrile,22c,35a,36 we observed formation of the desired
product in 62% yield (Table 1, entry 2). Though we prepared

Figure 1. Decarboxylative halosulfonylation and subsequent amina-
tion of (hetero)aryl acids via Cu-LMCT catalysis.

Figure 2. General design plan for the decarboxylative halosulfonyla-
tion of (hetero)aryl acids.

Table 1. Control Experiments and Optimization for LMCT
Decarboxylative Chlorosulfonylation and One-Pot
Sulfonamide Formation

entrya deviations yieldb

1 none 69%
2 no LiBF4 62%
3 ambient light only 0%
4 no Cu 0%
5 no NFTPT 0%
6 no DCDMH 0%
7 no SO2 0%
8 with Na2S2O5 (2 equiv) instead of SO2 2%
9 with DABSO (1 equiv) instead of SO2 0%
10 entry 2 then morpholine (2 equiv) and DIPEA (2 equiv) 50%c

11 entry 1 then morpholine (2 equiv) and DIPEA (2 equiv) 68%c

a0.1 mmol scale. bYields determined by 19F NMR analysis. cYield of
the corresponding morpholine sulfonamide. See SI for experimental
details. NFTPT, 1-fluoro-2,4,6-trimethylpyridinium tetrafluoroborate.
DCDMH, 1,3-dichloro-5,5-dimethylhydantoin.
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our solution in house, similar stock solutions of SO2 in
acetonitrile are commercially available. This solution could be
stored over extended periods of time in a sealed vessel at −20
°C. Despite frequent use, no decrease in reaction performance
was observed when using a single 4.0 M stock solution for >6
months. Control reactions are consistent with the proposed
LMCT pathway, as copper, oxidant, and light are all essential
for reactivity (Table 1, entries 3−5).

We next attempted to convert the sulfonyl chlorides to
sulfonamides in the same reaction vessel. We found that this
functionalization could be achieved in near quantitative yield
from the intermediate sulfonyl chloride by adding morpholine
and DIPEA to the crude reaction mixture following irradiation
and removal of unreacted SO2.

37 Across both steps, we found
that LiBF4 was a beneficial additive for avoiding the formation
of an undesired sulfonyl fluoride byproduct, ultimately

Figure 3. Decarboxylative chlorosulfonylation and one-pot sulfonamide formation. Reactions were performed on a 0.5 mmol scale with
(hetero)aryl acid (1 equiv), [Cu(MeCN)4]BF4 (20 mol %), 1,3-dichloro-5,5-dimethylhydantoin (1 equiv), 1-fluoro-2,4,6-trimethylpyridinium
tetrafluoroborate (1 equiv), LiBF4 (1.2 equiv), SO2 (2 equiv), MeCN (0.1 M), 365 nm LEDs, 12 h. Amination conducted in MeCN or THF (0.1
M) with amine or amine·HCl (2 equiv) and DIPEA or pyridine (2−4 equiv). See SI for experimental details. All yields isolated. aAmination
performed with 25 equiv of NH4OH. bWith N-chlorosuccinimide (2.5 equiv) as the chlorination reagent. cWith N-chlorophthalimide (2 equiv) as
chlorination reagent. dWith 10 mol % [Cu(MeCN)4]BF4.
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delivering the desired morpholine sulfonamide in 68% yield
(Table 1, entry 11).
Excitingly, this strategy was extended to efficient decarbox-

ylative fluorosulfonylation using Selectfluor as both the single
electron oxidant and fluorine atom source, slightly elevated
copper loadings of 50 mol %, and an increased concentration
of 0.5 M (see SI for experimental details).
With the optimized conditions in hand, we evaluated the

scope of the decarboxylative chlorosulfonylation reaction
(Figure 3). To demonstrate that electronically and sterically
unbiased substrates are capable of this reaction, benzoic acid
was converted to benzenesulfonamide (1, 63% yield).
Gratifyingly, electron deficient acids (2−7, 61−85% yield)
proceeded with good to excellent efficiencies. Notably, these
examples were successfully functionalized with diverse amines,
providing efficient access to primary, secondary, tertiary, and
anilinic sulfonamides, all in near quantitative yield from the
intermediate sulfonyl chlorides. Ortho-substitution was also
found to be well tolerated (8 and 9, 58 and 75% yield,
respectively). Additionally, O−heteroatom substituents could
be effectively introduced around the arene periphery (10 and
11, 71 and 61% yield, respectively), as well as electron
donating alkyl substituents (12 and 13, 59 and 61% yield,
respectively). Finally, other sulfur-containing functionalities

such as trifluoromethyl thioethers (14, 75% yield) and sulfonyl
fluorides (15, 69% yield) were successfully tolerated, high-
lighting an opportunity to introduce distinct sulfur-containing
functionalities of variable oxidation states on the same arene.
We were eager to evaluate the scope of heteroaryl sulfonyl

chlorides accessible via this sequence, as these scaffolds are
desirable in medicinal chemistry programs despite the
challenges presented by their high electrophilicity and
susceptibility to hydrolysis. We were delighted to find that
our method proceeded in good efficiency on a range of
differentially substituted, electron-deficient pyridines, including
picolinic (16−18, 45−64% yield), nicotinic (19−22, 45−55%
yield) and isonicotinic (23, 63% yield) acids across a diverse
set of amines.
We next attempted to extend our method beyond

(hetero)arenes and toward the functionalization of other
medicinally relevant s-rich acids, such as cyclopropanes and
bicyclo[1.1.1]pentanes (BCPs), which have found widespread
adoption as arene bioisosteres.38 An inexpensive and
commercially available BCP substrate, 3-(methoxycarbonyl)-
BCP-1-carboxylic acid, was efficiently converted to the
corresponding sulfonamide (24, 63% yield). While BCPs
bearing a sulfonamide exit vector have been reported in the
literature, they previously have been accessed via a 5-step

Figure 4. Decarboxylative fluorosulfonylation of (hetero)aryl carboxylic acids. Reactions were performed on a 0.5 mmol scale with (hetero)aryl
acid (1 equiv), [Cu(MeCN)4]BF4 (50 mol %), Selectfluor (1.5 equiv), SO2 (2 equiv), and MeCN (0.5 M), 365 nm LEDs, 12 h. All yields isolated.
aIsolated as the SNAr product with N-Boc piperazine. bVia halogen exchange from the corresponding sulfonyl chloride. See SI for experimental
details.
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synthetic sequence.39 Beyond this BCP scaffold, cyclopropanes
were also readily functionalized in high yield (25, 64% yield,
see SI for additional examples and limitations).
While each of the acid starting materials that appear in

Figure 3 are inexpensive and commercially available,40 the
corresponding sulfonyl chlorides are in many cases either not
commercial (designated by NC) or are prohibitively expensive
(>$100 per gram and >18× more expensive per gram than the
acid starting material, designated by PE).41 As such, this
procedure to convert bench-stable acids to desirable
sulfonamides via a one-pot protocol alleviates a significant
limitation associated with sulfonamide preparation.
Next, we evaluated the scope of the decarboxylative

fluorosulfonylation (Figure 4). This reaction tolerates both
electron-deficient (26−28, 50−82% yield) and electron-rich
(29 and 30, 50 and 53% yield, respectively) acids. Additionally,
highly activated aryl bromides (31, 56% yield) are well
tolerated. This method also extends to a similarly desirable
selection of electron deficient isonicotinic (32−34, 51−61%)
and nicotinic acids (35, 59% yield). While picolinic acids did
not proceed in the standard protocol with high efficiencies, a

one-pot, two step procedure for their synthesis from the
intermediate sulfonyl chloride was developed (36, 53% yield).
Though more challenging, other heteroarenes, such as
pyridazines (37, 40%), were also successful.
To demonstrate the differentiated reactivity of sulfonyl

chlorides and fluorides, we subjected 2-chloro-6-
(trifluoromethyl)nicotinic acid to both sets of halosulfonyla-
tion conditions, followed by an identical one-pot amination.
These two sequences gave different products: the sulfonyl
chloride was converted exclusively to the expected sulfonamide
product (38, 65% yield) while the sulfonyl fluoride gave
exclusively the SNAr product (39, 71% yield). This selectivity is
due to the attenuated electrophilicity of sulfonyl fluorides and
can allow for programmable SNAr/sulfonamide formation
sequences.
To exemplify the utility of these methods in drug discovery

programs, we undertook the synthesis of sulfonamide
analogues for amide-containing biologically active molecules
(Figure 5). Sulfonamide analogues of (±)-Bitopertin and
Vismodegib could be synthesized in high yields directly from
their amide coupling partners (40 and 41, 53 and 72% yield,

Figure 5. Late stage functionalization via Cu-LMCT halosulfonylation. All yields isolated. See SI for experimental details. aAfter two-step benzylic
oxidation and decarboxylative fluorosulfonylation. Yield given is for the fluorosulfonylation step.
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respectively). Additionally, native carboxylate pharmacophores
could be directly converted into sulfonyl fluoride-containing
chemical probes potentially capable of forming covalent
linkages in the binding sites of their target proteins.18

Specifically, Ataluren and Lumacaftor were converted into
their sulfonyl fluoride analogues in good yield (42 and 43, 62
and 41% yield, respectively). Finally, the tolyl group of
Celebrex was converted to an aryl sulfonyl fluoride in a two-
step sequence involving benzylic oxidation and subsequent
decarboxylative fluorosulfonylation (44, 54% yield).
In summary, we have developed an approach for aromatic

decarboxylative halosulfonylation that is amenable to a one-pot
synthesis of sulfonamides from traditional amide coupling
partners. We anticipate that these reactions will be of value to
the medicinal chemistry community by assisting in the rapid
synthesis of diverse organosulfur products.
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