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ABSTRACT: The direct synthesis of C(sp3)-rich architectures is a driving force for innovation in synthetic organic chemistry. Such
scaffolds impart beneficial properties onto drug molecules that correlate with greater clinical success. Consequently, there is a strong
impetus to develop new methods by which to access sp3-rich molecules from commercial feedstocks, such as alkenes. Herein, we
report a three-component aminoalkylation reaction that utilizes the principles of triple radical sorting to regioselectively add N-
centered and C-centered radicals across alkenes. This process relies upon photoredox catalysis to transform alkyl bromides and
reductively activated N-centered radical precursors into high-energy radical species in a redox-neutral fashion. A broad scope of
coupling partners is demonstrated, with multiple synthetic applications, including facile syntheses of pharmacophoric substituted N-
heterocycles.

The development of methods to access medicinally
relevant scaffolds is a major focus of synthetic organic

chemistry.1 Two prominent features of modern drug molecules
are nitrogen atoms and C(sp3)-hybridized carbon atoms.
Nitrogen is ubiquitous within drug molecules, demonstrated
by its presence in 84% of approved pharmaceutical scaffolds.2

Likewise, incorporation of C(sp3)-rich architectures into
pharmaceutical candidates is a key metric of clinical success,
as exemplified by the increasing fraction of sp3-hybridized
carbon atoms through each phase of drug discovery.3

Thus, the ability to simultaneously introduce both a nitrogen
atom and a C(sp3)−C(sp3) bond to a chemical feedstock
would represent an attractive, practical advance in the synthesis
of medicinally relevant molecules. One approach to this goal
would involve the direct aminoalkylation of commercially
abundant alkenes (Figure 1a). Recent reports have explored
the ability of alkenes to serve as cross-coupling partners for
transition-metal catalyzed C(sp3)−C(sp3) bond formation
through a metal-hydride hydrogen atom transfer (MHAT)
process.4−9 Anti-Markovnikov C(sp3)−N bond formation
followed by HAT has also been widely explored through
myriad hydroamination reactions.10−18 Expanding on hydro-
amination, a variety of aminofunctionalization reactions have
been developed, wherein the radical generated upon nitrogen
addition can undergo a broad spectrum of transforma-
tions.19−29 While methods for intramolecular aminoalkylation
have been disclosed, including an elegant nickel-catalyzed
method from Leonori and co-workers,30 the direct intermo-
lecular aminoalkylation of alkenes has remained challenging.
Reported methods for this transformation include radical
conjugate addition of the formed β-amino radical with styrenes
and electrophilic alkenes,31−33 and energy-transfer initiated
chain processes to form carbonyl-containing compounds.34,35

Recent work from our group and others has shown the
ability of various metal complexes to efficiently sort alkyl
radicals toward C(sp3)−C(sp3) bond formation through
bimolecular homolytic substitution (SH2) mecha-

nisms.6−9,36−40 This manifold of radical sorting has been
expanded to allow “triple radical sorting”, wherein two
transient carbon-centered radicals are simultaneously gener-
ated and sorted by both an alkene and an SH2 catalyst.

41−43

These multicomponent couplings proceed through electro-
philic carbon-centered radical addition to an unactivated
alkene, generating a nucleophilic radical, which then undergoes
SH2 with an in situ formed alkyl metal species to deliver
dicarbofunctionalized products. We wondered whether this
triple radical sorting mechanism could be expanded to
encompass highly reactive heteroatom radicals, such as
nitrogen-centered radicals. Certain nitrogen-centered radicals
are sufficiently electrophilic to add into alkenes,20 but we
hypothesized that deleterious side reactions, such as hydrogen
atom transfer (HAT)44 and addition to the metal catalyst,24

could hinder effective alkene difunctionalization.
Our design plan involves three distinct phases of radical

sorting (Figure 1b). First, an electrophilic N-centered radical
and a nucleophilic C-centered radical are simultaneously
generated and electronically sorted by the unactivated alkene.
Unactivated alkenes are typically π-nucleophilic,45 so the
electrophilic N-centered radical should outcompete the
nucleophilic C-centered radical for alkene addition. This N-
centered radical addition generates a sterically hindered
tertiary radical, which is disfavored from adding to the nickel
radical sorting catalyst due to the weaker bond strengths of
more hindered nickel−alkyl species.38 In contrast, the
unhindered primary radical should form a significantly stronger
nickel−carbon bond,38 allowing sorting of the two nucleophilic
radicals based on steric parameters. The final phase of the
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proposed sequence involves quaternary C(sp3)−C(sp3) bond
formation via SH2 reaction of the nucleophilic tertiary radical
with the metal alkyl species. This step would furnish the final
aminoalkylated product, featuring a new C(sp3)−N bond and a
C(sp3)−C(sp3) bond regioselectively forged across a degree of
unsaturation.
To accomplish our goal of alkene aminoalkylation, we

envisioned using metallaphotoredox catalysis, which has been
extensively applied in the generation and subsequent cross-
coupling of free radical species from traditionally inert
partners.46 The requisite alkyl radicals would be generated
from feedstock alkyl bromides through halogen-atom transfer
(XAT) by an oxidatively activated silane species.47−49 To

ensure a redox-neutral catalytic cycle, we required a reductive
mode of N-centered radical generation. Inspired by reports of
oxidative N-centered radical formation through decarboxyla-
tion and carbonyl β-scission,21,26 we sought to invert the redox
cycle by appending a redox-active N-hydroxyphthalimide ester
to the carboxylic acid, rendering the species reductively
activated.50 Herein, we report the metallaphotoredox-medi-
ated, three-component coupling of alkyl bromides, alkenes, and
nitrogen-centered radical precursor substrates to forge a broad
scope of aminoalkylated products. Synthetic applications of
this method include formal N-heterocycle aminoalkylation
through a telescoped heterocycle synthesis protocol, the
formation of vicinal quaternary centers, and couple-close43,51

sequences for ring synthesis (Figure 1c).

Figure 1. Aminoalkylation of alkenes.

Figure 2. Proposed mechanism.

Table 1. Control Reactions for Aminoalkylationa

Entry Deviation Yieldb

1 none 62%
2 no light 0%
3 no photocatalyst 0%
4 no nickel catalyst 5%
5 no Si (3) 0%
6 no N2 sparge 21%
7 1.0 equiv of 3, 7, 17 40%

aReactions were performed with 7 (1.5 equiv), 3 (1.5 equiv), 1 (1
mol %), 14 (25 mol %), DMC/H2O (2:1, 0.067 M), integrated
photoreactor (450 nm, 50% light intensity). bYields were determined
by uHPLC analysis versus mesitylene as an internal standard. See SI
for experimental details.
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Table 2. Substrate Scopea

aReactions performed on 0.5 mmol scale unless otherwise noted with alkene (2.0 equiv), alkyl bromide (1.0 equiv), N-centered radical precursor
(1.5 equiv), 3 (1.5 equiv), 1 (1 mol %), 14 (25 mol %), 2:1 DMC/H2O (0.067 M), integrated photoreactor (450 nm, 50% light intensity), 2 h.
Isolated yields are reported unless otherwise noted. bNickel(II) acetylacetonate (25 mol %) and potassium trispyrazolylborate (25 mol %) used
instead of 14. c2:1 d.r. d2.3:1 d.r. e1:1 d.r. fYield determined by uHPLC analysis versus mesitylene as an internal standard. gSee SI for experimental
details. h3.4:1 d.r. i4.1:1 d.r.
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The proposed mechanism for this transformation is detailed
in Figure 2. First, blue light excitation of iridium-based
photocatalyst [Ir(dFFppy)2(dtbbpy)](PF6) (1, dFFppy = [3,5-
difluoro-2-(5-fluoro-2-pyridinyl)phenyl], dtbbpy = 4,4′-di-tert-
butyl-2,2′-bipyridine) yields an oxidizing triplet excited state
(2, E1/2red[IrIII*/IrII] = +1.48 V versus saturated calomel
electrode (SCE)).52 Aminosilane reagent 3 can be readily
oxidized by this excited state photocatalyst, resulting in
reduced photocatalyst 5 and N-centered radical 4, which is
proposed to spontaneously undergo radical aza-Brook
rearrangement to furnish silyl radical XAT reagent 6.49

Subsequently, 5 can directly reduce N-centered radical
precursor 7 (E1/2red[IrIII/ IrII] = −1.32 V versus SCE),52

thereby closing the photocatalytic cycle and, upon extrusion of
CO2 and phthalimide anion, generating tertiary radical 8. This
radical intermediate can undergo β-scission to form acetone
and N-centered radical 9, which readily adds to unactivated
alkene 10, generating tertiary radical 11.22,26 Concurrently,
XAT reagent 6 can undergo a facile bromine atom transfer
with alkyl bromide 12 to supply primary radical 13.53 Capture
of this intermediate by Ni(TMHD)2 (14, TMHD = 2,2,6,6-
tetramethyl-3,5-heptanedionate) affords NiIII-alkyl species
15.37 Finally, tertiary radical 11 is proposed to undergo a
C(sp3)−C(sp3) bond forming SH2 reaction to form amino-
alkylated product 16 and close the nickel catalytic cycle.37,41

Radical clock and TEMPO trapping studies (see SI section 6
for details) support the radical nature of this proposed
mechanism.
Optimization studies showed the capability of multiple

commercially available photocatalysts to promote reactivity
(see Table S2 for details). Additionally, several nickel-based
radical sorting catalysts gave similar levels of product
formation, with Ni(TMHD)2 (14) proving to be optimal
(see Table S3 for details). Control experiments (Table 1)
support our mechanistic hypothesis: no reaction was observed
in the absence of light, photocatalyst, or silane (entries 2, 3,

and 5), and only 5% yield was obtained in the absence of nickel
catalyst (entry 4). Under our optimal conditions, product 19
was obtained in 62% yield (entry 1). The yield is drastically
lowered in the presence of oxygen (entry 6, 21% yield). Finally,
utilizing just 1.0 equiv of each stoichiometric reaction
component provided a diminished yet synthetically useful
40% yield (entry 7).
We next set out to explore the scope of the aminoalkylation

reaction. We first evaluated a variety of unique alkyl bromides
across several different model alkenes using a Tfoc (2,2,2-
trifluoroethoxy carbonyl) protected N-centered radical pre-
cursor (7). As shown in Table 2, ether, amino alcohol, and
amide-containing alkyl bromides were well tolerated, forming
medicinally relevant quaternary centers54 (16, 20, 21, 51−57%
yield). Ethyl and phosphonate groups were readily employed
in this transformation, delivering 2,3-substituted piperidine
cores (22 and 23, 64% and 57% yield, respectively).
Morpholine, tertiary alcohol, and acetal-containing alkyl
bromides also served as viable substrates, affording quaternary
centers on five-membered ring alkenes with good yields (24−
26, 53−70% yield). Moreover, medicinally relevant hetero-
cycles, such as benzimidazolone55 and quinazolinone,56 were
incorporated into aminoalkylated products with excellent
yields (27 and 28, 83% and 72% yield, respectively).
We next probed the alkene scope of the transformation.

Both phenoxy- and alkoxy-substituted terminal alkenes
performed well, providing heteroatom-rich products in good
yields (31 and 32, 53% and 62% yield, respectively). Terminal
vinyl carbamates and sulfides served as competent substrates
(33 and 34, 53% and 59% yield, respectively). Moreover, 1,1-
disubstituted alkenes, including the four-membered rings,
cyclobutyl and azaspiro[3.5]nonane, were smoothly function-
alized (35 and 36, 63% and 56% yield, respectively). Six-
membered rings also performed well, including those
containing gem-difluoro and ketone functional groups (37
and 38, 56% and 57% yield, respectively). Construction of

Table 3. Synthetic Applicationsa

aIsolated yields are reported. See SI for experimental details.
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sterically demanding vicinal quaternary centers was readily
accomplished, with only a minor loss in efficiency compared to
a nondimethyl substituted substrate (39 and 19, 44% and 58%
yield, respectively). Next, a seven-membered 1,1-disubstituted
alkene was functionalized, providing 41 in 61% yield. The
scope was then expanded to trisubstituted alkenes, yielding
highly substituted cyclopentane products in good yields (42
and 43, 46% and 52% yield, respectively).
Finally, we evaluated the impact of installing different

protecting groups on the N-centered radical. The NHBoc
radical performed well in the system, forming quaternary
center-containing products across a variety of alkenes and alkyl
bromides with good yields (45−48, 47−69% yield). Both
NHBoc and NHCbz radicals were incorporated into a
pyrrolidinone scaffold, showcasing the ability of this method
to accommodate a variety of protecting groups with similar
efficiencies (49 and 50, 53% and 42% yield, respectively).
In a demonstration of the synthetic utility of this method, we

next constructed a series of saturated N-heterocycles (Table
3). First, the NHBoc radical was subjected to aminoalkylation,
and subsequent Boc deprotection and cyclization yielded the
formal N-heterocycle aminoalkylation product. Notably, this
reaction sequence was telescoped, with chromatography only
occurring after the final cyclization step. This protocol was
utilized to synthesize N-alkylated pyrrolidine and morpholine
products, both of which are commonly occurring57 hetero-
cycles in approved drugs (51 and 52, 35% (70% per step) and
26% (64% per step) yield, respectively). To our delight, a
cyclic N-centered radical performed well in the reaction,
providing oxazolidinone 53 in 69% yield. Next, alkyl chloride-
containing alkenes were subjected to a “couple-close”
sequence. First, aminoalkylated product 54 was synthesized
and subjected to a highly efficient base-mediated deprotec-
tion58−cyclization cascade to furnish substituted morpholine
product 55 in near quantitative yield. Then pyrrolidine 56,
containing a quaternary center, was smoothly constructed in a
telescoped fashion via intramolecular alkyl chloride cyclization.
In conclusion, we have developed a method to forge both a

C(sp3)−N and a C(sp3)−C(sp3) bond across commercial
feedstock alkenes with perfect regioselectivity. A broad scope
of alkene and alkyl bromide cross-coupling partners are well
tolerated, and multiple different protecting groups on the N-
centered radical are competent in the reaction. Finally, we
highlighted the ability of this technology to form substituted
N-heterocycles through “couple-close” sequences. We antici-
pate that this work will find use in the pharmaceutical industry
for the rapid synthesis of nitrogen and C(sp3)-rich molecules.
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