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ABSTRACT: The replacement of a functional group with its corresponding bioisostere is a widely employed tactic during drug
discovery campaigns that allows medicinal chemists to improve the ADME properties of candidates while maintaining potency.
However, the incorporation of bioisosteres typically requires lengthy de novo resynthesis of potential candidates, which represents a
bottleneck in their broader evaluation. An alternative would be to directly convert a functional group into its corresponding
bioisostere at a late stage. Herein, we report the realization of this approach through the conversion of aliphatic alcohols into the
corresponding difluoromethylated analogues via the merger of benzoxazolium-mediated deoxygenation and copper-mediated
C(sp3)−CF2H bond formation. The utility of this method is showcased in a variety of complex alcohols and drug compounds.

I n medicinal chemistry, the strategy of bioisosteric
replacement can result in drug candidates with improved

pharmacokinetic profiles and enhanced likelihood of clinical
success (Figure 1).1−3 However, the preparation of bioisosteric
analogues often entails multistep de novo syntheses and the
use of high-energy reagents.4−8 Alternatively, late-stage
functionalization strategies that permit the direct, one-step
conversion of a functional group to its corresponding
bioisostere may offer significant advantages in efficiency,

thereby providing entry to an expanded chemical space and
accelerating the drug discovery process.

As pertinent functionalities in drug molecules, hydroxyl
groups are found in approximately 37% of approved
therapeutics and modulate a variety of important pharmaceut-
ical properties, including potency and solubility.9 However,
these groups are also hydrophilic and nucleophilic and are
prone to facile metabolic oxidation. Consequently, their
applicability is highly situational and difficult to predict a
priori. In contrast, the bioisosteric difluoromethyl group retains
the ability to participate in hydrogen-bonding interactions yet
is significantly more lipophilic, metabolically stable, and
chemically inert.10−12 To date, the difluoromethyl group has
been most commonly explored in the form of X−CF2H

13−15

and C(sp2)−CF2H
16,17 groups. Notably, although sp3-enriched

drug candidates tend to exhibit improved pharmacological
properties with higher clinical success rates,18 the incorpo-
ration of C(sp3)−CF2H groups into pharmaceutical candidates
remains conspicuously underexplored. This incongruity arises
from the synthetic difficulties in efficiently incorporating
difluoromethyl groups into pharmaceutically relevant com-
pounds. Important recent advances have relied on electro-
philic, nucleophilic, and radical difluoromethyl sources to build
C(sp3)−CF2H groups from a variety of functionalities, such as
acidic C(sp3)−H bonds, alkyl amines, alkyl halides, alkenes,
and ketones.19 Specifically, the Liu20 and Xiao21 groups have
demonstrated the conversion of aliphatic hydroxyl groups
directly into difluoromethyl motifs. These methods, while
pioneering, suffer from concerns about substrate scope as they
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Figure 1. Bioisosterism as a strategy for drug discovery.
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are either limited to activated alcohols (benzylic/α-carbonyl)
or necessitate the use of harsh reagents that are incompatible
with complex pharmaceuticals. We envisioned that a mild and
general one-step deoxygenative difluoromethylation procedure
amenable to late-stage diversification would be of value to
practitioners of medicinal chemistry.

Metallaphotoredox catalysis has emerged in recent years as a
valuable platform for the construction of previously elusive
C(sp3)−C(sp3) bonds from common organic functionalities,
including a variety of traditionally challenging fluorinated
motifs.22−28 Within this framework, conversion of a hydroxyl
group to a difluoromethyl group would proceed through two
stages: (i) activation of the hydroxyl group into a reactive
intermediate and (ii) formation of the C(sp3)−CF2H bond
from this intermediate. Our laboratory recently disclosed a
novel alcohol activation mode that converts aliphatic alcohols
into their corresponding deoxygenated alkyl radicals via
condensation of the alcohols with a benzoxazolium salt
(termed “NHC”) and subsequent photochemical oxidation.29

We reasoned that an alkyl radical thus formed could react with
a copper cocatalyst and an electrophilic CF2H reagent to forge
the desired C(sp3)−CF2H bond, thereby achieving direct
bioisostere replacement.

The overall reaction design is outlined in Figure 2. First, an
aliphatic alcohol (2) is activated by in situ condensation with a

stoichiometric amount of an NHC salt (1) to form an amide
acetal adduct (3). Excitation of the photocatalyst (4) produces
a long-lived excited state (5) (E1/2

red[IrIII*/IrII] = +0.66 V
versus SCE) that can be reductively quenched by the adduct
via single-electron transfer (SET).29 Subsequent deprotonation
of the now acidified methine C−H (pKa = ∼10) provides an α-

amino radical (7), which undergoes exothermic β-scission of
the alcohol C−O bond to afford an alkyl radical (8) and 1
equiv of an inert aromatized byproduct. Single-electron
reduction of an electrophilic CF2H reagent30 (9) by the
reduced IrII photocatalyst (6) liberates difluoromethyl radical
(10), which in the presence of Cu(I) (11) forms Cu(II)−
CF2H species (12). The alcohol-derived alkyl radical (8) is
trapped onto the copper at near-diffusion-controlled rates to
form a putative alkyl−Cu(III)−CF2H complex (13) from
which a favorable reductive elimination furnishes the desired
difluoromethylated product (14).

Extensive optimization studies revealed that stirring N-Cbz-
piperidin-4-ol (2) with NHC salt 1 (1.2 equiv) and pyridine
(1.5 equiv) in methyl tert-butyl (MTBE) [0.1 M] followed by
syringe filtration and subsequent 450 nm irradiation in the
presence of [Ir(dFMeppy)2(dtbbpy)]PF6 (2 mol %), bis-
(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II) [Cu-
(TMHD)2] (5 mol %), tri-tBu-terpy (5 mol %), tetrabuty-
lammonium benzoate (TBAOBz) (1.2 equiv), and electro-
philic CF2H reagent 9 (1.05 equiv) in 5:1 DMSO/MTBE
[0.017 M] provided the desired product in 70% yield (Table 1,

entry 1). We found this methodology to be relatively robust
because it tolerates both oxygen and adventitious moisture
(entries 2 and 3). Furthermore, the procedure is amenable to a
variety of user-friendly modifications that facilitate the practical
application of this protocol (entries 4−6). All catalysts and
light are necessary for the efficient formation of the desired
product (entries 7−10).

With these conditions in hand, we investigated the scope of
this transformation (Table 2). We were pleased to observe that
a variety of unactivated primary alcohols could be directly
converted into their difluoromethyl analogues in good yields
(15−19, 51−70% yield). Additionally, an array of structurally
and electronically diverse unactivated secondary alcohols
served as competent substrates in this transformation. Aliphatic
acyclic secondary alcohols were difluoromethylated in good
efficiencies (20 and 21, 70% and 58% yield). Furthermore, an

Figure 2. Proposed mechanism for deoxydifluoromethylation.

Table 1. Optimized Conditions and Control Reactionsa

entry deviation yieldb

1 none 70%
2 no degassing 67%
3 with 50 equiv of H2O 58%
4 no preligation 60%
5 450 nm Kessil lamp 60%
6 no filtration (+1.2 equiv of TBAOBz) 65%
7 no photocatalyst 0%
8 no copper catalyst 0%
9 no ligand 26%
10 no light 0%

aReactions performed on 0.05 mmol scale with alcohol (1 equiv),
NHC-1 (1.2 equiv), pyridine (1.5 equiv), MTBE (0.10 M), 15 min;
2-[(difluoromethyl)sulfonyl]benzo[d]thiazole (1.05 equiv), TBAOBz
(1.2 equiv), Cu(TMHD)2 (5 mol %), tBu-terpy (5.5 mol %), 5:1
DMSO/MTBE (0.017 M), integrated photoreactor (450 nm, 100%
light intensity), 4 h. bYield determined by 19F-NMR analysis.
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Table 2. Scope of Building Blocks and Biomoleculesa

aReactions performed on 0.5 mmol scale with alcohol (1 equiv), NHC-1 (1.2 equiv), pyridine (1.5 equiv), MTBE (0.10 M), 15 min; 2-
[(difluoromethyl)sulfonyl]benzo[d]thiazole (1.05 equiv), TBAOBz (1.2 equiv), Cu(TMHD)2 (5 mol %), tBu-terpy (5.5 mol %), 5:1 DMSO/
MTBE (0.017 M), integrated photoreactor (450 nm, 100% light intensity), 4 h. Yields are isolated unless otherwise specified. bPerformed with o-
OMe-NHC and {Ir[dF(Me)ppy]2(dtbbpy)}PF6 (2 mol %). See the Supporting Information for experimental details. cCopper loading deviates, see
the Supporting Information. d>99% ee. eYield determined by 19F-NMR analysis.
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assortment of cyclic and heterocyclic difluoromethylated
compounds bearing various functionalities were synthesized
in good yields from five-membered (21 and 22, 63% and 58%
yield), six-membered (14 and 23−25, 56−70% yield), and
even seven-membered ring systems (26 and 27, 57% and 69%
yield). Our studies demonstrated that this difluoromethylation
protocol could be applied to primary and secondary benzylic
alcohols to generate the desired products in high efficiencies
(29−33, 53−83% yield). We next endeavored to apply this
procedure to more complex alcohols, namely, those derived
from naturally occurring biomolecules. To this end, we have
successfully synthesized the difluoromethylated analogues of
the terpenoid fragrances geraniol (34, 66% yield), myrtenol

(35, 70% yield), and menthol (36, 62% yield), thereby
demonstrating the potential utility of this method in the
development of perfumes. Furthermore, the secondary alcohol-
bearing hormone androsterone could be converted into its
respective difluoromethylated analogue in good yield (37, 56%
yield). Excitingly, alcohols derived from amino acids, such as
hydroxyproline (38, 51% yield) and serine (39, 30% yield),
could be difluoromethylated in synthetically useful yields,
thereby allowing for access to noncanonical amino acids in one
step. Furthermore, this transformation could be implemented
toward a threonine-containing peptide in synthetically useful
yield (40, 30% yield), which demonstrates a late-stage
application of this method. Finally, this method allows direct

Table 3. Scope of Complex Alcohols and Pharmaceuticalsa

aReactions performed on 0.5 mmol scale with alcohol (1 equiv), NHC-1 (1.2 equiv), pyridine (1.5 equiv), MTBE (0.10 M), 15 min; 2-
[(difluoromethyl)sulfonyl]benzo[d]thiazole (1.05 equiv), TBAOBz (1.2 equiv), Cu(TMHD)2 (5 mol %), tBu-terpy (5.5 mol %), 5:1 DMSO/
MTBE (0.017 M), integrated photoreactor (450 nm, 100% light intensity), 4 h. All yields are isolated. bPerformed with o-OMe-NHC and
{Ir[dF(Me)ppy]2(dtbbpy)}PF6 (2 mol %). See the Supporting Information for experimental details. cCopper loading deviates; see the Supporting
Information.
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access to difluoromethylated nucleoside analogues. Difluor-
omethylated deoxyribose (41, 49%) was obtained in useful
yield; this product can serve as a linchpin intermediate toward
the synthesis of difluoromethylated deoxynucleoside ana-
logues, which have remained rare and unexplored motifs in
the medicinal chemistry literature.31 Moreover, direct deoxydi-
fluoromethylation of protected deoxycytidine could be
achieved in a synthetically useful yield (42, 39% yield),
thereby allowing access to this coveted motif in one step.

We next explored the deoxydifluoromethylation of complex
druglike compounds with the goal of demonstrating the
potential of the method to serve as a robust, late-stage
functionalization platform (Table 3). Accordingly, a range of
structurally and electronically diverse primary and secondary
aliphatic difluoromethylated compounds were synthesized in
good yields (43−46, 43−64% yield). Moreover, complex
druglike benzylic primary and secondary alcohols served as
excellent substrates for this transformation (47−50, 52−85%
yield). Finally, we investigated the scope of this transformation
in the context of hydroxyl-containing pharmaceutical mole-
cules. We were pleased to find that a variety of difluoromethy-
lated drug analogues could be synthesized. The primary
alcohol of ticagrelor acetonide was transformed into the
difluoromethyl group in moderate yield (51, 45% yield).
Several piperidinol-based and pyrrolidinol drug compounds�
nadifloxacin, alogliptin, and a VHL binder32�yielded product
in good efficiencies (52−54, 43−51% yield). The primary
benzylic alcohols on analogues of apixaban (55, 89% yield),
ataluren (56, 75% yield), and losartan (57, 70% yield) were
converted to difluoromethyl groups in good yields. Finally,
ezetimibe bearing a secondary benzylic alcohol was difluor-
omethylated in a good yield (58, 71% yield).

Recognizing that alkylated analogues of difluoromethyl
radical precursor 9 could be readily synthesized in a modular
fashion from the corresponding alcohols, we next sought to
expand this method to encompass difluoroalkylation. gem-
Difluoroalkanes have garnered interest as powerful modulators
of pharmacokinetic properties and in some cases have been
investigated as bioisosteres of functional groups, such as ethers
and carbonyls.10,33−36 However, these motifs are typically
prepared from the corresponding ketones via harsh deoxy-

fluorination procedures.37−40 Given the late-stage applicability
of our protocol, we aimed to gain access to difluoroalkylated
products from the corresponding alcohols (Table 4). Gratify-
ingly, slight modifications to the procedure resulted in a
method that facilitates the efficient transformation of alcohols
into primary−secondary (59, 64% yield), primary−primary
(60 and 61, 71% and 56% yield), secondary−secondary (62,
51% yield), and secondary−tertiary (63, 31% yield) difluor-
oalkyl products. The last example is noteworthy considering
the synthetic challenges encountered in the preparation of the
corresponding secondary−tertiary ethers.41

In summary, we present herein an efficient protocol for the
direct interconversion of aliphatic alcohols into their
difluoromethyl bioisosteres. This transformation is applicable
to a diverse range of substrates, including primary and
secondary small alcohols and various biologically relevant
alcohols. The versatility of this method in late-stage
applications was highlighted through the direct functionaliza-
tion of a broad scope of complex druglike alcohols and
pharmaceuticals. Furthermore, the protocol was expanded to
allow for the efficient deoxygenative difluoroalkylation of
diverse alcohols. We expect that this reaction will prove
valuable to the medicinal chemistry community and foster the
discovery of novel difluoromethylated and difluoroalkylated
therapeutics.
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