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The growing study of glycobiology[1] has led
to an increased focus upon carbohydrate
architecture[2] as an important platform for
reaction design and methodological advance-
ment.[3] Application of the aldol reaction[4] to
the synthesis of carbohydrates is well-docu-
mented;[5] however, the attendant need for
protection-group manipulations and oxida-
tion-state adjustments has thus far precluded
a broadly utilizable protocol. Intriguingly, a
highly expedient two-step carbohydrate syn-
thesis can be envisioned based on an iterative
aldol sequence using simple a-oxyaldehydes
[Eq. (1)]. While attractive in theory, the
practical execution of this carbohydrate
strategy would require the invention of two
new aldol technologies: a) an enantioselec-

tive aldol union of a-oxyaldehyde substrates (Aldol step 1)
and b) a diastereoselective aldol coupling between tri-oxy
substituted butanals and an a-oxyaldehyde enolate (Aldol
step 2). Herein we report the successful development of the
first enantioselective organocatalytic coupling of an a-oxy-
aldehyde (Aldol step 1). This new aldol reaction provides an
operationally simple protocol for the stereocontrolled pro-
duction of polyol architectures and sets the stage for a two-
step enantioselective carbohydrate synthesis.[6]

The development of a direct, enantioselective catalytic
aldol reaction between a-oxyaldehyde substrates (Aldol
step 1) is dependent upon three key issues of chemical
selectivity.[7] In addition to the traditional requirements of
absolute and relative stereocontrol comes the chemoselective
constraint that the a-oxyaldehyde reagent A must readily
participate as both a nucleophilic and electrophilic coupling
partner while the a-oxyaldehyde product B must be inert to
in situ enolization or carbonyl addition [Eq. (1)]. Recently,

we disclosed an organocatalytic strategy for the highly
regioselective, diastereoselective, and enantioselective aldol
cross-coupling of a-alkyl-bearing aldehydes [Eq. (2)].[8] An
important feature of this transformation is that the enan-
tioenriched aldehyde products C do not participate in further
aldol reactions (by either enamine formation or carbonyl
addition). With this in mind, we hoped that such remarkable
catalyst-controlled stereo- and chemoselectivity might be
extended to the union of a-oxygenated aldehydes [Eq. (3)],
thereby allowing the first step in a two-step carbohydrate
synthesis to occur [Eq. 1].

Our enantioselective organocatalytic a-oxyaldehyde cou-
pling was first examined using l-Proline (10 mol %) and a
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variety of glycoaldehyde substrates
(Table 1). Preliminary studies revealed
that the proposed enantioselective aldol
union is indeed possible, however, the
electronic nature of the oxyaldehyde sub-
stituent has a pronounced effect on the
overall efficacy of the process. For example,
substrates that possess an electron-with-
drawing substituent, such as a-acetoxyace-
tyaldehyde 1a, do not participate in this
transformation, while aldehydes bearing
relatively electron-rich oxyalkyl groups
provide useful levels of enantiocontrol and
reaction efficiency (entry 2, R=Bn,
73% yield, 98% ee ; entry 3, R=PMB,
85% yield, 97 % ee). Moreover, aldehydes
bearing bulky a-silyloxy substituents can be
readily utilized (entry 5, R=TBDPS, 61%
yield, 96 % ee ; entry 7, PG=TBS, 50%
yield, 88 % ee), with the TIPS-protected
glycoaldehyde (entry 6) affording excep-
tional reaction efficiency (92 %), enantio-
selectivity (95 % ee), and a readily separa-
ble 4:1 mixture of anti and syn diastereom-
ers. It should be noted that all of the dimeric
aldol adducts shown in Table 1 constitute
protected forms of the naturally occurring
sugar erythrose, a chiral synthon of estab-
lished utility.[9] More importantly, the a-
oxyaldehyde products of this new aldol
protocol are apparently inert to further
proline-catalyzed enolization or enamine
addition, a central requirement for the
proposed two-step iterative–aldol carbohy-
drate synthesis [Eq. (1)].[10]

We next examined the ability of proline
to catalyze the enantioselective cross-cou-
pling of a-oxy- and a-alkyl-substituted
aldehydes (Table 2). The principal issue in
this reaction is that the nonequivalent
aldehydes must selectively partition into
two discrete components, a nucleophilic
donor and an electrophilic acceptor. Given
that most a-oxy- and a-alkyl aldehydes bear
enolizable protons, we anticipated that such
catalyst-controlled substrate partitioning
would be mechanistically unfavorable.
Remarkably, however the glycoaldehyde
invariably acts as the electrophile in the
presence of alkyl aldehydes that contain a-
methylene protons (entries 1–4, 94–
99% ee). Surprisingly, even the sterically
demanding isovaleraldehyde assumes the
role of nucleophile when exposed to proline
and a-benzyloxyacetaldehyde or a-silylox-
yacetaldehyde (entries 3 and 4). However,
both triisopropylsilyl- and benzyl-protected
oxyaldehydes can function as aldol donors
in the presence of aldehydes that do not

Table 1: Organocatalytic aldol dimerization of a-oxyaldehydes.

Entry Product Solvent Yield [%] anti :syn ee [%][a],[b]

1 DMF 0 – –

2 DMF 73 4:1 98

3 DMF 64 4:1 97

4 DMF 42 4:1 96

5 DMF/dioxane 61 9:1 96[c]

6 DMSO 92 4:1 95

7 dioxane 62 3:1 88[c]

[a] Absolute and relative stereochemistry assigned by chemical correlation. [b] Determined by chiral
HPLC. [c] Using 20 mol% catalyst. Bn=benzyl, PMB=para-methoxybenzyl, MOM=methoxymethyl,
TBDPS= tert-butyldiphenylsilyl, TIPS= triisopropylsilyl, TBS= tert-butyldimethylsilyl.

Table 2: Cross-aldol reactions with protected glycoaldehydes.

Entry Aldehyde Product Yield [%] anti :syn ee [%][a],[b]

a-alkyl OX

1
OTIPS

75 4:1 99acceptor

2 donor
OTBDPS

84 5:1 99[c]

acceptor

3
OTIPS

54 4:1 99acceptor

4 donor
OBn

64 4:1 94acceptor

5
OTIPS

43 8:1 99donor

6 acceptor
OBn

33 7:1 96donor

[a] Absolute and relative stereochemistry assigned by chemical correlation. [b] Determined by chiral
HPLC. [c] Determined by Mosher ester analysis.
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readily participate in enamine formation (entries 5 and 6,
� 33% yield� 7:1 anti :syn, 96–99% ee). It should be noted,
however, that significant quantities of the homodimers 2 f and
2b were generated in these respective cases.

These organocatalytic results stand in marked contrast to
metal-mediated direct aldol technologies[11] where the
increased acidity and nucleophilicity afforded by a-oxygen-
ated aldol donors greatly enhances their effectiveness relative
to their all-alkyl counterparts. We are currently investigating
the mechanistic origins of such divergent reactivity between
metal and organic catalysts in aldol reactions with a-oxy-
genated substrates.

In summary, we have documented the first direct enan-
tioselective catalytic aldol reaction using a-oxygenated alde-
hydes as both the aldol donor and the aldol acceptor.
Significantly, this method allows direct and enantioselective
access to differentially protected polyols and monoprotected
anti-1,2 diols. A full account of these studies will be presented
in due course.
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