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Metallaphotoredox aryl and alkyl 
radiomethylation for PET ligand discovery

Robert W. Pipal1, Kenneth T. Stout1, Patricia Z. Musacchio1, Sumei Ren2, Thomas J. A. Graham3, 
Stefan Verhoog4, Liza Gantert4, Talakad G. Lohith4, Alexander Schmitz3, Hsiaoju S. Lee3, 
David Hesk2,5, Eric D. Hostetler4, Ian W. Davies1 & David W. C. MacMillan1 ✉

Positron emission tomography (PET) radioligands (radioactively labelled tracer 
compounds) are extremely useful for in vivo characterization of central nervous 
system drug candidates, neurodegenerative diseases and numerous oncology 
targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for 
in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling 
protocols for the synthesis of either, inhibiting the development of PET radioligands. 
The synthesis of such radioligands also needs to be very rapid owing to the short 
half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox- 
catalysed method for late-stage installation of both tritium and carbon-11 into the 
desired compounds via methylation of pharmaceutical precursors bearing aryl and 
alkyl bromides. Methyl groups are among the most prevalent structural elements 
found in bioactive molecules, and so this synthetic approach simplifies the discovery 
of radioligands. To demonstrate the breadth of applicability of this technique, we 
perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex 
pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the 
clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct 
utility of this protocol for preclinical PET imaging and its translation to automated 
radiosynthesis for routine radiotracer production in human clinical imaging. We also 
demonstrate this protocol for the installation of other diverse and pharmaceutically 
useful isotopes, including carbon-14, carbon-13 and deuterium.

The incorporation of radioactive nuclides into bioactive molecules 
has revolutionized the field of pharmaceutical research and develop-
ment3–5. Among known radiolabelling applications, PET is an invaluable 
clinical tool that enables minimally invasive visualization of PET radio-
ligands, in vivo1. These isotope-enriched ligands serve as informative 
biomarkers for oncology6 and neurological disorders7, as well as critical 
tools for studying brain target occupancy relationships for central 
nervous system drug development8–11. At present, small-molecule PET 
imaging primarily relies on the use of fluorine-18 (18F, t1/2 = 110 min) 
and carbon-11 (11C, t1/2 = 20 min). However, the systematic incorpora-
tion of carbon-11 radionuclides into organic architectures remains a 
long-standing synthetic problem owing to a series of chemical and 
operational challenges. For example, the translation of non-radioactive 
12C chemistry to 11C radiolabelling is broadly hampered by: (1) the short 
20-min half-life of carbon-11, rendering most synthetic protocols 
outside the realm of operational utility with respect to experimental 
timeframes, (2) the availability of 11C-precursor starting materials, (3) 
carbon-11 generation in low nanomole quantities while non-radioactive 
reaction components are used in vast super-stoichiometric excess, 
necessitating clean reaction profiles and experimental miniaturization, 
and (4) the requirement for operationally simple and robust protocols 

that are insensitive to air and moisture4,12,13. Indeed, although many 
methods for 12C-installation have been invented throughout the history 
of organic chemistry, most are unfortunately unsuited to the challenges 
of radioisotopic 11C labelling.

Although the incorporation of carbon-11 is a necessity for in vivo PET 
imaging studies, the development of these PET radioligands gener-
ally requires additional in vitro characterization, such as tissue-based 
radioligand binding assays and in vitro autoradiography (Fig. 1a). These 
characterization methods are the touchstone for optimizing affinity 
and selectivity for a target, respectively2. In this context, it has long been 
established that tritium (3H or T) is the most attractive radioisotope for 
such in vitro studies, given its long half-life (t1/2 = 12 years). However, a 
major challenge of tritium labelling in these applications is the need 
to incorporate 2–4 tritium atoms per molecule (molar activities of 
50–100 Ci mmol−1), a requirement that has been met with limited suc-
cess using modern hydrogen isotope exchange strategies and instead 
is often achieved with tritiodehalogenation or alkene reduction via 
substrate resynthesis3,14. Indeed, although both tritium and carbon-11 
isotopologues of any pharmaceutical are critical for the discovery of 
PET radioligands, the radiosynthesis of such ligands remains a funda-
mental challenge, limiting drug discovery. As such, a radiolabelling 
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strategy that allows the incorporation of both tritium and carbon-11 
would dramatically affect radioligand design in the context of the thera-
peutic targets of neurological disorders as well as enabling biomarker 
discovery for cancer and neurodegenerative diseases.

A valuable yet versatile architectural element within organic radiola-
belling, the –CH3 or methyl group allows both hydrogen and carbon 
isotopes to be readily installed into drug molecules. For example, the 
installation of –CT3 enables three tritium atoms to be simultaneously 
incorporated, allowing rapid access to radioligands with high molar 
activities. At present, however, the state-of-the-art technology for 
radiosynthesis remains the classical SN2 mechanism between phenols 
or related N-nucleophiles with methyl electrophiles (that is, 11C- or 
3H-methyl halides)15,16. This simple alkylation protocol has long been 
exploited for radioligand development, but it has traditionally suffered 
from the issue of selectivity in drug molecule functionalization. For 
example, drugs that bear multiple nitrogen sites can often participate 
in serial methylation or quaternization, a chemoselectivity problem 
that must be suppressed via lengthy protecting-group strategies (which 
further diminish the likelihood of success in radioisotopic labelling).

As of 2018, more than 65% of top-selling small-molecule therapeutics 
possess one or more –CH3 groups bound to another carbon position17 
(Fig. 1b). Moreover, as methyl groups are among the most prevalent 
structural elements found in bioactive molecules, it is surprising that 
no general technology exists that allows methyl radiolabels to be 
installed onto aryl or alkyl groups within drug molecules. Given that 
long-established C–C cross-coupling technologies (for example, Stille, 
Suzuki and Negishi couplings) that allow methyl group installation have 
become a mainstay technique within pharmaceutical discovery, it is 
remarkable to consider that such approaches have been little used in 
radioisotopic labelling. Although palladium-mediated methods have 
been developed for aryl and alkyl 11C-methylation with [11C]iodometh-
ane, the challenging synthesis of organometallic precursors (for 
example, aryl stannanes, boronic acids and alkyl-BBNs), and the high 
reaction temperatures and strategic protecting-group manipulations 
required hamper adaptation of these technologies16. More critically, 

these protocols are not broadly translatable to tritiation owing to the 
volatility and facile radiolysis of [CT3]iodomethane18–20. To bridge this 
gap, we recognized that the late-stage, functional-group-tolerant radio-
isotopic aryl and alkyl methylation of a stable and easily accessible 
precursor would be particularly attractive. This methodology would 
enable the rapid radiosynthesis and discovery of PET radioligands for 
central nervous system therapeutic development. Furthermore, the 
development of an alkyl 11C-methylation strategy would enable the 
study of previously inaccessible radioligands.

Metallaphotoredox catalysis has emerged as a powerful platform 
for facilitating difficult C–C bond-forming reactions21. Recently, we 
reported a metallaphotoredox cross-electrophile coupling strategy 
mediated by silyl radical activation of alkyl halides22,23. This transforma-
tion is enabled by the merger of nickel catalysis, photoredox catalysis 
and a photocatalytically generated supersilyl radical intermediate. 
As this transformation is performed under exceptionally mild condi-
tions and allows the use of a broad range of substrates, we sought to 
develop a general approach to tritium and carbon-11 labelling via a 
metallaphotoredox-catalysed cross-electrophile methylation of aryl 
and alkyl bromides (Fig. 1c).

We first aimed to develop a tritium-labelling methodology using 
the model substrate Celebrex-Br (2), which upon methylation would 
furnish the tritiated pharmaceutical, [3H]Celebrex ([3H]3) (Fig. 2). To 
support sub-nanomolar ligand-binding studies and in vitro autora-
diography for PET radioligand development programmes (requir-
ing molar activities greater than 50 Ci mmol−1), we sought to obtain a 
radiochemical yield (RCY) greater than 10% (ref. 3). The tritritiomethyl 
source was selected as the limiting reagent owing to safety and cost 
considerations. We identified the commercially available methylating 
reagent [CT3]methyl 1-naphthalenesulfonate (CT3ONp, 1) as a suitable 
methylating reagent, which, owing to its stability and non-volatility 
compared to [CT3]iodomethane or tritium gas, allows for broader use 
in research laboratories24. A lithium bromide additive was employed 
to generate CT3Br in situ via a Finkelstein-like reaction from CT3ONp as 
well as to promote silyl radical formation (Supplementary Fig. 1) and 
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Fig. 2 | Scope of high-molar-activity tritiation. a, Tritium labelling of 
pharmaceuticals. b, Tritiation of PET radiotracers. c, Tritiation of aliphatic 
pharmaceuticals and radiotracers. All experiments reflect isolated RCY values 
with n = 1. Reaction conditions: CT3ONp (100 mCi, 1.25 μmol, 78.6–80.0 Ci 
mmol−1), lithium bromide (2–20 equiv.), integrated photoreactor (450 nm, 50% 
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aWith acetone (0.01 M), lithium iodide (5 equiv.), NiBr2•dtbbpy (40 mol%), 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (4 mol%). bWith alkyl bromide TFA salt (7 equiv.), 
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(8 mol%), supersilane (6 equiv.), 2,6-lutidine (10 equiv.), DMA (5 mM). Me, 
methyl; Et, ethyl; CT3–ONp, [CT3]-methyl 1-naphthalenesulfonate; dF(CF3)ppy, 
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a polar solvent system, dimethylacetamide (DMA)/toluene, was cho-
sen in order to solubilize complex pharmaceuticals (Supplementary 
Fig. 2). Because the reaction needs to be performed on a micromole 
scale, our protocol was developed to work under dilute conditions 
(0.01 M) such that an appreciable volume of solvent (125 μl) could 
be used for ease of handling. After 12 h of blue light irradiation in the 
integrated photoreactor25 under the optimized reaction conditions 
(see Supplementary Information for details), [3H]Celebrex was iso-
lated at 62% RCY. As hypothesized, the molar activity of the starting 
CT3ONp reagent (78.6 Ci mmol−1) was faithfully incorporated into the 
target drug, affording [3H]Celebrex ([3H]3) with a high molar activity 
of 78.9 Ci mmol−1. Additionally, control reactions conducted with unla-
belled CH3ONp showed that all reaction components were necessary  
(Supplementary Figs. 3, 4).

With the optimized conditions established, we sought to evaluate 
the generality of the silyl radical-mediated CT3-labelling protocol by 
synthesizing a variety of tritiated pharmaceuticals from their aryl bro-
mide precursors (Fig. 2). A broad range of electronically differentiated 
aryl bromides coupled efficiently in this protocol ([3H]4, [3H]5, [3H]6 
and [3H]7, 50%–68% yield). Protic functionality such as amides ([3H]4, 
[3H]11, [3H]13 and [3H]14), sulfonyl ureas ([3H]7, [3H]8), phenols ([3H]9) 
and free benzoic acids ([3H]13), as well as ortho substituents ([3H]4, 
[3H]11, [3H]13 and [3H]14), are well tolerated. Perhaps most notably, 
substrates possessing tertiary amines ([3H]9, [3H]10, [3H]12), which are 
traditionally challenging functional groups for photoredox catalysis 
given their low oxidation potential (Epa [Et3N/Et3N•+] = +0.78 V versus 
saturated calomel electrode (SCE) in CH3CN)26, delivered the tritiated 
products in good yields (33%–49% yield). In these cases, additional 
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lithium bromide was necessary to reduce the formation of oxidized 
byproducts, potentially through the preferential oxidation of bromide 
over amines. Heteroaryl bromides such as bromopyrazines ([3H]14) 
and 2- or 3-bromopyridines ([3H]12, [3H]13 and [3H]15) coupled in syn-
thetically useful yields (28–68% yield). For more activated aryl bromide 
substrates where rapid consumption of the haloarene was observed 
([3H]11, [3H]14 and [3H]15), using acetone as solvent and lithium iodide 
in lieu of lithium bromide was beneficial through generation of the 
more reactive CT3I and consequent matching of the consumption 
rates of the two coupling partners. Gratifyingly, we found that triti-
ated analogues of reported PET radioligands could be synthesized in 
high molar activity using this coupling manifold ([3H]16, [3H]17 and 
[3H]18, in 42%–62% yield).

Given the recently demonstrated silyl radical-mediated Csp3–Csp3 
coupling of alkyl bromides23, we questioned whether –CT3 groups could 
be introduced at aliphatic positions of pharmaceuticals. Excitingly, 
we found primary ([3H]20) and secondary alkyl bromides ([3H]19 and 
[3H]21) to be competent coupling partners under these reaction con-
ditions (8%–28% yield), demonstrating, to the best of our knowledge, 
the first example of tritium labelling via an alkyl–alkyl cross-coupling 
strategy.

From the outset, we recognized the different challenges associated 
with carbon-11 labelling compared to tritium chemistry. Namely, the 
short half-life of carbon-11 (20 min) necessitates a rapid reaction with 
a simple purification procedure for a synthesis time under 60 min. Fur-
thermore, the limited pool of radiolabelled starting materials required 
the use of simple reagents such as [11C]MeI or [11C]MeOTf. With the same 
Celebrex-Br precursor (2), we evaluated the feasibility of carbon-11 
labelling with [11C]iodomethane (22) (Fig. 3a). Through optimization, 
we found that introducing tetrabutylammonium iodide increased the 
reaction efficiency potentially by suppressing formation of the less 
reactive [11C]bromomethane mediated by bromide anion generated 

during the course of the reaction (Supplementary Figs. 5, 6). The label-
ling was performed by bubbling [11C]iodomethane in a stream of helium 
gas through the reaction mixture containing all other reaction com-
ponents. Conducting the reaction with 130–165 mCi (4.81–6.11 GBq) 
of [11C]iodomethane for 5 min under blue light irradiation followed by 
high-performance liquid chromatography (HPLC) purification afforded 
[11C]Celebrex ([11C]3) after 22.7 min in 48 ± 4% (n = 3) decay-corrected 
yield (dc) (22% non-decay-corrected, ndc) (see Supplementary Informa-
tion for experimental details). We attribute this shorter reaction time 
to the super-stoichiometric excess of reagents relative to the nanomole 
quantities of [11C]MeI, resulting in pseudo-first-order reaction kinetics.

Next, we examined the generality of the silyl radical-mediated 
carbon-11 labelling using selected examples from tritiation (Fig. 3a). 
Substrates for which the corresponding organostannanes would be 
unstable or challenging to synthesize, such as the complex molecule 
[11C]11 and the 2-methylpyridine-containing [11C]15, are methylated with 
[11C]iodomethane in sufficient yields to support in vivo PET imaging 
or biodistribution studies (yields of 26% and 44%, respectively). The 
previous synthesis of [11C]16 relies on methylation of the correspond-
ing bis-protected arylstannane in 19% yield (dc); however, no product 
was observed with the unprotected purine ring27. Under our protocol, 
however, methylation directly from the unprotected aryl bromide 
affords [11C]16 in 21% yield, avoiding time-consuming protecting group 
strategies. Additionally, [11C]17 and [11C]UCB-J ([11C]18) are generated 
in excellent yields (44% and 58%, respectively)28,29.

Carbon-11 methylation at alkyl positions through cross-coupling 
has been a particularly underdeveloped field, only having been dem-
onstrated with primary 9-BBN reagents30. By using DMA as solvent and 
without added tetrabutylammonium iodide, a variety of alkyl bromides 
were coupled efficiently ([11C]19, [11C]20 and [11C]21, 13%–36% yield). 
Notably, free phenols were tolerated in our transformation by virtue 
of the mild reaction conditions ([11C]20 and [11C]21). To highlight the 
utility of this approach, we aimed to develop an improved synthesis of 
[11C]PHNO ([11C]20), a well studied PET tracer previously prepared in 
three radiochemical steps employing protecting-group manipulations 
and pyrophoric reagents31. In one step from a stable alkyl bromide 
precursor, [11C]PHNO was conveniently prepared in sufficient yields 
for in vivo imaging studies (13 ± 2% yield). Lastly, SB-269970, a specific 
5-HT7 antagonist that previously required derivatization to introduce 
a handle for fluorine-18 labelling32, was successfully carbon-11-labelled 
([11C]21).

To demonstrate the utility of this carbon-11 labelling protocol for 
in vivo PET imaging applications, a non-human primate PET study was 
conducted with [11C]UCB-J ([11C]18), an investigational PET radioligand 
for measuring synaptic density in neurodegenerative disorders (Fig. 3b, 
Supplementary Figs. 12, 13). To ensure reproducibility of this method, 
our 11C-labelling protocol was independently performed by Siemens 
Molecular Imaging Biomarker Research in North Wales, Pennsylvania, 
with a robotic, remote-controlled radiosynthetic setup for the prepara-
tion of [11C]UCB-J. The procedure was validated, yielding 72 ± 10% RCY 
(dc) and 19 ± 2% RCY (ndc) (n = 4) of the radioligand. Remarkably, up to 
140 mCi (5.18 GBq) of isolated [11C]18 could be synthesized using this 
operationally simple reaction protocol with molar activities in the 
range 1.03–3.00 Ci μmol−1 (Fig. 3b), activities well above the thresh-
old required to perform human PET studies (10 mCi, 1 Ci μmol−1)12,33. 
Consistent with preclinical data in rhesus monkeys28, baseline PET 
scans with 11.8 mCi (437 MBq) of [11C]UCB-J showed rapid uptake into 
the brain, peaking after 10–30 min and with moderate washout of the 
radiotracer by the end of the 90-min scan (Supplementary Figs. 12, 13). 
Importantly, these results demonstrate the robustness of the radiola-
belling procedure in the hands of multiple practitioners and its utility 
in pre-clinical PET imaging.

Routine clinical production of carbon-11 PET-imaging agents is car-
ried out on automated radiosynthesis modules within a cGMP (cur-
rent good manufacturing practice) environment. To demonstrate 
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the feasibility of applying this method within a relevant context, we 
adapted a Synthra MeIplus module with the integrated photoreactor25 
and conducted a fully automated production of [11C]Celebrex ([11C]3). 
Under identical reaction conditions, the fully automated radiosynthesis 
of [11C]Celebrex ([11C]3) from Celebrex-Br was complete in 29 min in 
35% RCY (dc, n = 1), yielding 43.2 mCi of [11C]3 with high molar activity 
(2.237 Ci μmol−1) (Fig. 3c). Furthermore, inductively coupled plasma 
mass spectrometry (ICP-MS) analysis of the isolated radioligand [11C]18 
indicated a nickel and iridium content of 33 parts per billion (ppb) 
and 1 ppb respectively, in line with international recommendations 
of elemental impurities for samples injected into humans34. Taken 
together, this data strongly supports the feasibility of using this label-
ling methodology for clinical imaging in humans.

To further emphasize the utility and generality of this cross-coupling 
manifold, we endeavoured to incorporate all medicinally relevant 
carbon and hydrogen isotopes into a given pharmaceutical agent 
(Fig. 4). Each of these isotopologues serves a unique purpose in the 
drug development process. Carbon-14-labelled compounds are valu-
able for tracking the fate of a chemical compound through absorp-
tion–distribution–metabolism–excretion (ADME) studies35, benzylic 
deuteration allows for slowed metabolism of pharmaceutical agents36, 
and incorporation of 13CD3 groups generates [M+4] mass compounds 
that are particularly useful as mass spectrometry standards37. As dem-
onstrated with the anti-diabetic medication Glipizide, these isotopo-
logues, including the tritiated and carbon-11 analogues, are accessed 
in excellent yields using the same general coupling strategy ([3H]23, 
[2H]23, [13C2H]23, [14C]23 and [11C]23).

In summary, we have developed a broadly useful radioisotopic meth-
ylation protocol allowing access to novel radioligands from easily acces-
sible organobromide precursors. Furthermore, we have demonstrated 
that this methodology is amenable to preclinical PET imaging and have 
provided support for potential translation to human clinical imaging 
through automated radiosynthesis. We anticipate that this powerful 
platform will enable a more rapid discovery of PET radiotracers for 
addressing unmet clinical needs.
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