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Alkene dialkylation by triple radical sorting

Johnny Z. Wang1,2, William L. Lyon1,2 & David W. C. MacMillan1 ✉

The development of bimolecular homolytic substitution (SH2) catalysis has expanded 
cross-coupling chemistries by enabling the selective combination of any primary 
radical with any secondary or tertiary radical through a radical sorting mechanism1–8. 
Biomimetic9,10 SH2 catalysis can be used to merge common feedstock chemicals—such 
as alcohols, acids and halides—in various permutations for the construction of a single 
C(sp3)–C(sp3) bond. The ability to sort these two distinct radicals across commercially 
available alkenes in a three-component manner would enable the simultaneous 
construction of two C(sp3)–C(sp3) bonds, greatly accelerating access to complex 
molecules and drug-like chemical space11. However, the simultaneous in situ formation 
of electrophilic and primary nucleophilic radicals in the presence of unactivated 
alkenes is problematic, typically leading to statistical radical recombination, hydrogen 
atom transfer, disproportionation and other deleterious pathways12,13. Here we report 
the use of bimolecular homolytic substitution catalysis to sort an electrophilic radical 
and a nucleophilic radical across an unactivated alkene. This reaction involves the 
in situ formation of three distinct radical species, which are then differentiated by size 
and electronics, allowing for regioselective formation of the desired dialkylated 
products. This work accelerates access to pharmaceutically relevant C(sp3)-rich 
molecules and defines a distinct mechanistic approach for alkene dialkylation.

A key goal of organic chemistry is the development of new methods for 
the rapid synthesis of C(sp3)–C(sp3) bonds en route to three-dimensional 
drug-like molecules14–16. Traditional cross-coupling paradigms rely 
on oxidative addition, transmetallation and reductive elimination 
mechanistic steps that limit the pool of potential coupling partners. By 
contrast, bimolecular homolytic substitution (SH2) catalysis couples 
primary radicals with secondary or tertiary radicals through a radical 
sorting mechanism on the basis of carbon–metal bond strength1–8,17. 
As this unique radical sorting mechanism is functional group agnostic, 
abundant radical precursors, such as alcohols, acids and halides, can be 
coupled in any desired combination to generate complex products from 
simple feedstock chemicals1–8 (Fig. 1a). This approach greatly expands 
access to C(sp3)-rich chemical space and enables formation of other-
wise elusive all-C(sp3) quaternary centres18. Although radical-sorting 
SH2 catalysis has been shown to construct a single C(sp3) bond from a 
variety of radical precursors, the more challenging three-component 
radical sorting mechanism has yet to be demonstrated.

A one-step protocol for the regioselective dialkylation of unacti-
vated alkenes is highly desirable11. Alkenes are widely available, and 
the simultaneous construction of two C(sp3)–C(sp3) bonds across an 
alkene would greatly accelerate access to therapeutically advantageous 
C(sp3)-rich small molecules14. Because of the propensity of alkyl–metal 
complexes to undergo β–H elimination19–21, existing methods for alk-
ene dialkylation remain greatly limited, relying either on auxiliary 
functional groups to direct dialkylation22–24 or the presence of specific 
ground-state radical traps25. A general method in which two distinct 
radicals are formed and regioselectively added across any unactivated 
alkene represents an ideal approach.

We envisioned a catalytic alkene dialkylation platform commencing 
with the addition of an electrophilic alkyl radical—such as trifluoromethyl 

or difluoroacyl radical—into an alkene. Subsequent radical–radical 
recombination of the resultant radical species with a nucleophilic alkyl 
radical would yield the dialkyl adduct in a single transformation (Fig. 1b). 
The proposed dialkylation would be expected to proceed with good regi-
oselectivity and enable installation of electron-poor alkyl groups that are 
typically not compatible with nickel catalysis26. Through the course of the 
reaction, three distinct radicals would be formed and must be efficiently 
sorted. Unsurprisingly, the envisioned transformation does not proceed 
in the absence of any sorting catalysts; instead, deleterious pathways, 
including disproportionation, alkyl–alkyl dimerization and hydrogen 
atom transfer, predominate12,13. We postulated that an appropriate SH2 
catalyst, which has been shown to facilitate outer-sphere C(sp3)–C(sp3) 
bond formation, might be used to sort these three simultaneously gener-
ated radicals toward productive alkene dialkylation. For the hypothesized 
radical sorting to be operative, the catalyst used must be capable of 
preferentially binding primary alkyl radicals over high-energy electro-
philic alkyl radicals and secondary or tertiary radicals while still being 
capable of performing outer-sphere bimolecular homolytic substitution 
for C(sp3)–C(sp3) bond formation. Herein, we disclose a general strategy 
for the dialkylation of alkenes through the simultaneous generation 
of electrophilic alkyl radicals and primary nucleophilic radicals in the 
presence of unactivated alkenes (Fig. 1c). The functional group-agnostic 
nature of SH2 catalysis permits the use of commercially available primary 
alcohols and electron-poor alkyl chlorides as radical precursors, giving 
potential access to 2 × 1015 C(sp3)-rich dialkylated products.

Mechanism
We envisioned that the alkene dialkylation would proceed by 
the mechanism outlined in Fig.  2. Condensation of primary  
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alcohol 1 onto a benzoxazolium salt (N-heterocyclic carbene 
(NHC)) forms adduct 2 in situ27. Meanwhile, blue light excitation of 
(Ir[dF(CF3)ppy]2(dtbbpy))PF6 (3) accesses a long-lived, triplet excited 
state 4 (E1/2

red[*IrIII/IrII] = +1.21 V versus saturated calomel electrode in 
MeCN)28. Stern–Volmer analysis (Supplementary Information) suggests 
that 4 undergoes reductive quenching with 2. Subsequent deprotona-
tion and facile β-scission provide the desired primary alkyl radical 
(6) and a benign aromatized by-product. The primary alkyl radical 
can then be captured by high valent nickel SH2 catalyst 7, producing 
nickel–alkyl complex 8 (ref. 2). To close the photocatalytic cycle, 
reduced-state IrII (9) is capable of reducing an α-acyl alkyl chloride 10 
(or dimesityl(trifluoromethyl)sulfonium trifluoromethanesulfonate 
(dMesSCF3(OTf))) to produce an electrophilic carbon-centred radi-
cal (11) that can add into an unactivated alkene (12). Radical probes 
(Supplementary Information) support the formation of a tertiary 
radical (13), which is capable of being further functionalized29–31. 
This nucleophilic tertiary radical can undergo an SH2 reaction with 8, 

thereby regenerating 7 and forming the desired dialkylated product (14)  
(Supplementary Information has select mechanistic experiments). 
Key to the success of this reaction is the radical sorting of the many 
transient radicals, both electronically through the addition to the alk-
ene and sterically through binding to a high valent nickel complex. We 
envisioned that this mechanistic paradigm might provide a general, 
modular strategy for the dialkylation of unactivated olefins.

Alkene scope
We first sought to interrogate the scope of the alkene coupling partner 
(Fig. 3). We selected trifluoromethyl and difluoroacetamide radicals as 
the electrophilic alkyl radical partners as both groups are important 
in drug discovery32,33. For the primary radical partner, we opted to use 
the methyl radical both for its ability to favourably influence the prop-
erties of drugs (termed the magic methyl effect) and because of the 
challenge often posed by its incorporation into complex molecules34. 
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Fig. 1 | Radical-sorting-enabled alkene dialkylation. a, Bimolecular homolytic 
substitution (SH2) radical sorting enables the use of any functional group in any 
combination for C(sp3)–C(sp3) bond formation. b, Three-component radical 
sorting enables alkene dialkylation. c, This work shows alkene dialkylation of 
unactivated alkenes using primary alcohols and α-acyl chlorides as radical 

precursors. Commercial availability was determined through a Reaxys  
search from October 2023 of commercially available fragments: 1° alcohols 
(261,696), α-acyl chlorides (29,000), alkenes (268,553). Ar, aryl; Bn, benzyl;  
Boc, tert-butylcarbonyl; Cbz, carbobenzyloxy; Me, methyl; Ni, nickel; PC, 
photocatalyst; Ph, phenyl.
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Gratifyingly, the coupling reaction proceeded efficiently across a wide 
range of alkenes. Unactivated terminal alkenes with relatively low 
π-nucleophilicity35 were dialkylated in good yields, tolerating protic 
functionality (15, 16) as well as homolytically labile allyl–benzylic C–H 
bonds (17, 18). The coordinatively saturated SH2 catalyst is incapable of 
oxidative addition; as such, aryl and alkyl halide-containing vinyl ethers 
and enamides were dialkylated in good yield (19–21). The generation 
of quaternary centres, a long-standing challenge in organic synthesis, 
can be achieved from four-, five-, six- and seven-membered rings as 
well as from acyclic 1,1-disubstituted alkenes (22–27). Notably, tertiary 
boronic esters (28), ethers (29) and ureas (30) were effectively formed 
under our reaction conditions. Moreover, a range of 1,2-disubstituted 
and trisubstituted alkenes were competent substrates (31–34). As a 
demonstration of the mild and robust nature of the reaction condi-
tions, we successfully dialkylated several complex bioactive molecules. 
Specifically, efinconazole (35), paroxetine derivative (36), vinclozolin 
(37), retapamulin (38), quinine (39) and ataluren derivative (40) were 
dialkylated in good yields, showcasing the ability of the reaction to 
tolerate tertiary amines, alcohols, sulfides, quinuclidines and oxidative 
addition-prone oxadiazole functionality. These results suggest that the 
protocol should be applicable to the late-stage dialkylation of alkenes.

Alkyl chloride scope
We next turned our attention to exploring the scope of the electro-
philic radical partner (Fig. 4). Alkyl chlorides were selected as radical 
precursors for their ease of synthesis, commercial availability and 
enhanced stability over their bromide counterparts. We found that 
α-acyl radicals spanning a range of electrophilicity profiles, from 

α-ester to α-difluoroester radicals (41–43), reacted in good yields. Both 
acetamide (44), a ubiquitous moiety in drugs, and substituted difluoro-
acetamides (45), which are particularly important in fragment-based 
drug discovery, could be incorporated through the dialkylation pro-
tocol. Synthetically useful Horner–Wadsworth–Emmons reagents 
(46) and α-acyl chlorides (47) were prepared in good yields and offer 
the potential for further elaboration. In addition to α-acyl radicals, 
we found numerous other electrophilic carbon-centred radicals to 
be viable electrophilic radical partners, including α-difluorosulfonyl 
(48), difluorobenzyl (49) and α-nitrile (50) radicals.

Primary alcohol scope
Finally, we explored the scope of the primary alcohol coupling part-
ner. As shown in Fig. 4, a broad scope of pharmaceutically relevant 
alkyl fragments was incorporated through our protocol. Coupling 
with commercially available 13C methanol served to install an isotopi-
cally labelled methyl group at the quaternary centre (51). Moreover, a 
range of alcohols were found to be effective alkyl coupling partners, 
including ether alcohol (52), threonine (53), serine (54), guaifenesin 
(55) and other diols (56, 57). Reaction of diol substrates proceeds 
with full regioselectivity for the primary alcohol. These complex, 
coupled products (53–57) bear a free hydroxyl group that can be 
subjected to further elaboration through NHC activation. Moreo-
ver, 1,1-disubstituted alkenes in four-membered rings (58) or acyclic 
substrates (59) were observed to undergo efficient alkylation with 
carbobenzyloxy-glycinol. Notably, 1,2-disubstituted alkenes (60) were 
also readily dialkylated, providing an orthogonally protected mor-
pholine scaffold. The complexity-building potential of this protocol 
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was demonstrated through elaboration of dialkylated products into 
complex C(sp3)-rich frameworks (61, 63). The tertiary alcohol of 61 was 
activated by NHC, and subsequent benzylation5 proceeded efficiently 
to generate a second quaternary centre (62). In the case of 63, the ter-
tiary alcohol served as a radical precursor en route to alkylation with 
dehydroalanine36 to yield complex scaffold, 64.

Conclusion
Key to the strategy described herein is an outer-sphere C(sp3)–C(sp3) 
bond formation capable of forming quaternary centres. A wide range of 
unactivated alkenes were dialkylated, including tertiary amines, alco-
hols, aryl halides and other reactive functionalities. Several examples 
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of both the electrophilic radical and primary radical partners contain-
ing sites for further elaboration were demonstrated in good yield. 
Modulation of all three reaction components should allow for the rapid 
synthesis of C(sp3)-rich small molecule libraries. Furthermore, the 
described approach provides a framework for future developments 
in C(sp3)–C(sp3) bond-forming alkene difunctionalization.
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