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 17 
The ability to tame high-energy intermediates is critical for synthetic chemistry, enabling the construction 18 
of complex molecules and propelling advances in the field of synthesis. Along these lines, carbenes and 19 
carbenoid intermediates are particularly attractive, but often elusive, high-energy intermediates.1,2 20 
Classical methods to access metal carbene intermediates exploit two-electron chemistry to form the critical 21 
carbon–metal bond. However, these methods are often prohibitive due to reagent safety concerns, limiting 22 
their broad implementation in synthesis.3–6 Mechanistically, an alternative approach to carbene 23 
intermediates that could circumvent these pitfalls would involve two single-electron steps: radical addition 24 
to a metal to forge the initial carbon–metal bond followed by redox-promoted α-elimination to yield the 25 
desired metal carbene intermediate. Herein, this strategy is realized through a metallaphotoredox platform 26 
that exploits iron carbene reactivity using readily available chemical feedstocks as radical sources and α-27 
elimination from six classes of previously underexploited leaving groups. These discoveries permit 28 
cyclopropanation and σ-bond insertion into N–H, S–H, and P–H bonds from abundant and bench-stable 29 
carboxylic acids, amino acids, and alcohols, thereby providing a general solution to the challenge of 30 
carbene-mediated chemical diversification.  31 
 32 
Controlled access to high-energy chemical intermediates, such as carbanions, carbocations, radicals, and 33 
carbenes, is a key step in many critical bond forming processes.7–10 Accessing these intermediates requires 34 
reactive starting materials that possess high-energy ground states, which limits functional group compatibility, 35 
particularly in the context of complex synthetic targets. Modern advances in organic chemistry have allowed 36 
controlled access to some synthetically useful high-energy species, most notably, radical intermediates.11–14 37 
Photoredox catalysis harnesses the energy of visible light for reactivity up-conversion, turning inert and stable 38 
starting materials into reactive radical species. The extension to metallaphotoredox catalysis, which merges 39 
transition metal cross-coupling with these radical intermediates, provides entry to an immense depth of previously 40 
inaccessible chemical space.8 By contrast, broad access to carbenes and carbenoids remains elusive, despite their 41 
similar transformative potential in a wide range of bond formations.2,15 Traditional methods for accessing carbene 42 
intermediates rely on high-energy, bifunctional or pseudo-bifunctional precursors, such as diazo (or pro-diazo) 43 
compounds, polyhalogenated precursors, or sulfonium ylides.3,5,16 Ultimately, the reactivity and structural 44 
specificity of these starting materials limits utility and, in some cases, raises safety concerns, such as the need for 45 
high temperatures and/or explosive reagents. Although Motherwell, and more recently, Nagib have demonstrated 46 
that carbonyl intermediates can serve as carbene precursors through pre-generated zinc carbenoids,17–21 there 47 
remains no general strategy to access carbene intermediates from other naturally occurring and abundant starting 48 
materials, such as carboxylic acids, amino acids, and alcohols. To address longstanding limitations in carbene 49 
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chemistry, we envisioned separating the process of carbene generation into two sequential single-electron 50 
operations, exploiting the potential of visible-light photocatalysts to control radical formation and manipulate the 51 
oxidation state of metal catalysts. Herein, we report a general visible light-mediated strategy to access iron 52 
carbenes from abundant precursors via sequences of radical addition and reduction-induced α-elimination 53 
operating across six distinct types of non-traditional leaving groups. This approach allows cyclopropanation and 54 
X–H insertion reactions under mild conditions with broad functional group tolerance. More generally, this 55 
approach introduces the carbene equivalent of radical metallaphotoredox chemistry and circumvents many of the 56 
drawbacks of traditional strategies for carbene formation. 57 
 58 
To develop a single-electron approach to carbene formation, we first examined existing strategies in an effort to 59 
identify the critical design aspects. The most common methods to access carbene intermediates involve starting 60 
materials with ylide-type character, such as diazo-type compounds with a negative charge next to a diazonium 61 
ion.22,23 The bifunctional nature of these species allows for rapid formation of a metal carbene complex via 62 
nucleophilic attack on the metal center followed by heterolytic α-elimination (which is contingent on the 63 
appropriate metal oxidation state) to forge the second metal–carbon bond. The requirement for ylide-type 64 
reactivity limits the pool of potential starting materials for carbene reactivity, and the general functional group 65 
tolerance of any method developed with this chemistry. We questioned whether it would be possible to mimic 66 
ylide-type reactivity by using single-electron intermediates bearing a leaving group at the incipient radical center. 67 
To generate a carbenoid equivalent, radical metalation would yield the first metal–carbon bond, precluding the 68 
requirement for nucleophilic reactivity.8 Because of the low energy barrier for radical metalation, the event would 69 
occur at or close to the rate of diffusion, limiting off-cycle radical coupling or addition-type processes.24,25 Single-70 
electron reduction of the metal center would then trigger α-elimination, ejecting the leaving group and furnishing 71 
the desired metal carbene species. The timing of radical generation and manipulation of the redox state of the 72 
metal is critical to success here  and, as such, photocatalysis was pursued as a means to orchestrate these events 73 
(Fig. 1a).8 Although radical addition to metal centers is well-established in photocatalytic regimes,8 there are few 74 
reports of single-electron reduction-induced α-elimination, resulting in poor understanding of the leaving groups 75 
and by extension, carbene precursors, that would be tolerated within this step.26–29 Realization of this envisioned 76 
reaction archetype would permit access to a wealth of modes of radical generation, dramatically expanding the 77 
limited palette of metal carbenes and, in turn, the types of transformations enabled by these organometallic 78 
complexes. As such, achieving the desired carbene reactivity from radical precursors necessitated investigation 79 
into the proposed redox-induced α-elimination. 80 
 81 

Probing radical approach to carbene intermediates 82 
To realize this new carbene paradigm, three components would need to be addressed: (1) radical generation from 83 
the appropriate precursor, (2) identification of an appropriate metal for radical binding and redox window for 84 
controlled oxidation state changes, and (3) establishment of the ability of that metal to engage in α-elimination 85 
with synthetically convenient leaving groups upon oxidation state change. To evaluate the viability of our 86 
proposed sequence, α-acetoxy carboxylic acids were chosen due to the ease of radical formation from carboxylic 87 
acids, a benefit amplified by the nucleofugality of the acetate group and the synthetic accessibility of this motif 88 
from biologically abundant 2-hydroxyacids.19,30 We selected iron porphyrins as the metal scaffold for evaluation 89 
of radical binding and α-elimination. Iron has demonstrated metalation reactivity with alkyl radicals and has a 90 
rich history of carbene reactivity.28,31–39 Further, iron can readily facilitate α-elimination when in the appropriate 91 
oxidation state, and such states can be controlled with photocatalysts.28,29 Cyclopropanation was selected as a 92 
model reaction to capture evidence of putative carbene intermediates. This choice was motivated, in part, by the 93 
established reactivity of iron-mediated carbene insertion across olefins. Further motivation for using 94 
cyclopropanation was derived from the value of the resulting cyclopropane products to the industrial and 95 
academic communities.40–43 In evaluating our proposed reaction sequence, we were excited to observe successful 96 
cyclopropanation of 2-(prop-1-en-2-yl)naphthalene by acetate-protected lactic acid (activated as an N-97 
hydroxyphthalimide [NHPI] ester), using diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (Hantzsch 98 
ester) as a sacrificial reductant, with catalytic 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine iron(III) 99 
chloride (Fe(TMPP)Cl) and Ir(dFCF3ppy)2dttbpyPF6 under blue light irradiation. This initial reaction provided 100 
critical proof-of-concept that a radical approach to carbene intermediates was a viable strategy; upon 101 
optimization, the desired cyclopropanated product was obtained in 95% yield (see SI for further details). Control 102 
experiments revealed the necessity of all reaction components; no product was formed in the absence of the iron 103 
catalyst, light, or Hantzsch ester.  Diminished efficiency (36%) was observed in the absence of the iridium 104 
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photocatalyst, consistent with a Hantzsch ester-mediated electron donor-acceptor complex for radical generation 105 
(see extended data Fig. 1 for proposed catalytic cycle and Fig. S1 for further discussion).44 Taken together, these 106 
initial experiments support the viability of our novel metallaphotoredox-mediated carbene generation and capture 107 
paradigm.  108 
 109 
Having established the viability of this process for cyclopropanation, and with initial optimal conditions in hand, 110 
we sought to probe the scope of leaving groups viable for iron carbene formation. We synthesized NHPI esters of 111 
lactic acid derivatives possessing a range of non-traditional α-oxygenated leaving groups: α-phenoxy, α-methoxy, 112 
and α-hydroxy. Pleasingly, under the optimized conditions identified for the α-acetoxy system, all of these 113 
substrates were effective in the cyclopropanation (77–95% yield) (see Fig. S5). This tolerance led us to question 114 
whether leaving groups beyond oxygen-based systems would be viable. We investigated α-amino acids as 115 
precursors for iron carbenes using our net reductive reaction conditions. Using a range of amine protecting 116 
groups, we systematically evaluated the α-elimination step. Although most protecting groups were ineffective, 117 
including those within the expected nucleofugality range (see Fig. S8 for full list),45–47 we observed that tosyl- and 118 
trifyl-protected α-amino acids furnished the desired cyclopropanated products in good yields. The extension to 119 
tosyl- and trifyl-amine leaving groups is a rare example of nitrogen-based leaving groups participating in 120 
substitution/elimination-type reactivity and an underexplored strategy for deaminative functionalization.48–50 121 
Reaction development resulted in the identification of six distinct leaving groups capable of serving as carbene 122 
precursors, demonstrating the tolerance of iron porphyrin α-elimination to a wide range of leaving group abilities 123 
(a range of over 10 pKa units) and offering a modular strategy to access carbene intermediates (Fig. 1b). 124 
 125 

Scope of cyclopropanation using iron carbene intermediates 126 
With optimized cyclopropanation conditions in hand, we explored the scope of carboxylic acids and alkenes. We 127 
were excited to find both benzyl and alkyl carbenes, generated from α-acetoxy carboxylic acids, to be effective 128 
partners (Fig. 2). Styrenes (1) and electron-rich alkenes (2–4) smoothly underwent cyclopropanation, consistent 129 
with the well-established electrophilic reactivity of our proposed iron porphyrin carbene intermediate.33 Benzyl 130 
carbamate (CBz)-protected dehydroalanine was cyclopropanated in moderate yield (5), revealing a mild and 131 
facile approach to peptide backbone modification. Importantly, complex scaffolds bearing a range of functional 132 
groups were found to undergo efficient metallaphotoredox cyclopropanation, demonstrating the amenability of 133 
this method to late-state functionalization (6–8). Tertiary amines, traditionally problematic under photoredox 134 
conditions due to competitive oxidation,51,52 were well tolerated under a modified protocol involving addition of 135 
one equivalent of triflic acid to protonate the amine (7). An exploration of the scope of α-methoxy and α-phenoxy 136 
carboxylic acids again demonstrated that a range of substituted carbenes and alkenes perform well under the 137 
reaction conditions, including those containing medicinally relevant heteroaromatic rings (9–15).53  Several 138 
amino acids underwent carbene formation, albeit with diminished reactivity and yields; tosyl-protected alanine, 139 
methionine sulfoxide, leucine, and lysine served as viable carbene precursors (16–19). We were excited to find 140 
that a diverse array of cyclopropanated scaffolds could be accessed using multiple variations of both the radical 141 
precursor and olefin coupling partners (see Fig. S14 for additional examples).  142 
 143 

Beyond carboxylic acids as carbene precursors 144 
Given that binding of a radical to a metal center is disconnected from the origin of that radical, we wondered 145 
whether this paradigm could be extended to alternate radical precursors beyond those derived from carboxylic 146 
acids. Early studies supported the generality of this approach; α-bromo acetates that are either commercially 147 
available or easily generated from the corresponding aldehydes can be engaged via silyl radical-mediated halogen 148 
atom abstraction (XAT).54,55 Upon metalation of this alkyl radical species, controlled α-elimination generates the 149 
carbene intermediate, which in turn readily undergoes cyclopropanation (20–26) (Fig. 2, bottom).19 This finding 150 
encouraged us to explore other precursors of carbenes that would be arduous or even dangerous to make by other 151 
means. We turned our attention to accessing fluoroalkyl carbenes en route to high value fluoroalkyl 152 
cyclopropanes. Fluoromethylated cyclopropanes have emerged as valuable motifs in pharmaceuticals, due to their 153 
metabolic stability and beneficial effect on pharmacokinetic and pharmacodynamic profiles.56,57 Despite growing 154 
interest in these small carbocycles, fluoromethylated cyclopropanes are particularly challenging to access as they 155 
must currently be synthesized through diazo species, which pose substantial safety concerns.58,59 Recently, N-156 
hydroxyphthalimide activated β-fluoro alcohols have been shown to fragment to generate ketyl intermediates 157 
through a formal 1,2-hydrogen atom transfer (HAT) process (see Fig. S9 for proposed mechanism).60,61 Owing to 158 
the presence of the hydroxy motif geminal to a C(sp3)-radical, we hypothesized that these alcohol-derived ketyl 159 
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intermediates could serve as effective precursors to deliver fluoro-alkylated cyclopropane products through the 160 
metallaphotoredox carbene protocol described here. Using a readily accessible 2,2,2-trifluoroethylated NHPI 161 
ether, cyclopropanation proceeds smoothly when using styryl derivatives, including those with unprotected 162 
indoles (29) and carboxylic acids (30) (Fig. 3), demonstrating tolerance for acidic functionality that would be 163 
problematic using traditional carbene precursors due to their ylide-type character. Free amines are tolerated (31) 164 
under the acidic protonation strategy described earlier. Electron-deficient styrenes containing α-ester functionality 165 
undergo cyclopropanation in reasonable yield (32), and dienes are successfully converted to allylic 166 
trifluoromethylated cyclopropanes (33). An enamide derived from uracil exclusively reacts at the more electron-167 
rich olefin (34), consistent with electrophilic iron porphyrin carbene reactivity.33 Anilines and Cbz-protected 168 
amines are well-tolerated in the reaction, providing amino cyclopropane products (35–37). Less synthetically 169 
accessible cyclopropanes, such as a hydroxycyclopropane equivalent, can also be accessed via vinyl benzoate 170 
(38). Pharmaceutical compounds and complex drug-like scaffolds are cyclopropanated in high yields, 171 
demonstrating the high functional group tolerance of the method and the potential for application to late-stage 172 
functionalization (39–46). The use of 2,2-difluoroethanol as the starting material proved similarly effective, 173 
furnishing difluoromethyl-substituted cyclopropanes in moderate yields (47–51). By exploiting the ketyl-type 174 
fragmentation of β-fluoro NHPI-activated alcohols under reductive conditions, we obtained elusive di- and tri-175 
fluoromethylated cyclopropanes under our mild reaction conditions.  176 

 177 

σ-Bond insertion reactions 178 
Beyond cyclopropanation, iron carbenes are known to undergo σ-bond insertion reactions due to their Fischer-179 
type carbene character.62 This reactivity provides another potential avenue to harness the transient carbenes 180 
generated via metallaphotoredox, while concurrently verifying the intermediacy of iron carbenes in this platform. 181 
Our efforts to achieve σ-bond insertion using our newly developed carbene platform proved successful. We were 182 
excited to observe successful insertion of β-fluoro alcohol and carboxylic acid-based systems into P–H bonds 183 
(Fig. 4, 52 and 53). Extending this reactivity to thiophenol starting materials enabled the synthesis of 184 
(difluoro)alkylated thioether products (54 and 55). Furthermore, N–H alkylation of both anilines and amines 185 
proceeded smoothly, including on scaffolds containing medicinally important electron-deficient heteroarenes 186 
(56–59).53 Monoalkylated amine products were obtained by reaction with NHPI-activated α-phenoxy propanoic 187 
acid, bypassing the conventional reactivity of amide bond formation (60). The successful demonstration of σ-188 
bond insertion in these diverse settings further reveals the ability of carbene intermediates to engage in useful 189 
bond formations beyond annulation and establishes their power as reactive intermediates that may be effectively 190 
harnessed through our radical approach.    191 

 192 

Outlook 193 
In summary, we have disclosed a conceptually new platform that effectively accesses high-energy carbenes via 194 
the merger of iron catalysis with photoredox catalysis. Bench-stable and ubiquitous starting materials, such as 195 
carboxylic acids, amino acids, and alcohols, are readily converted to iron carbene intermediates through the 196 
energy of visible light. This approach overcomes the inherent limitations associated with accessing carbene 197 
reactivity using conventional methods and unlocks their potential as reactive intermediates under 198 
metallaphotoredox conditions from bench-stable starting materials using six types of underexplored leaving 199 
groups in reduction α-elimination steps. The utility of this method is exemplified by the variety of scaffolds that 200 
can be accessed via cyclopropanation and σ-bond insertion. The process described herein shows the broad 201 
tolerance for complexity that is characteristic of photochemical reactions. We anticipate this approach will appeal 202 
to academic and industrial practitioners alike as a new mechanistic approach to carbene generation and a 203 
powerful synthetic tool for exploiting carbene reactivity to enhance molecular complexity.  204 
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 339 

 340 
Methods 341 
General procedure for cyclopropanation using α-oxy carboxylic acid precursors. An oven dried 4 mL (≤ 0.5 342 
mmol scale) or 40 mL (> 0.5 mmol scale) vial equipped with a stir bar was charged with the 343 
Ir(dFCF3ppy)2dttbpyPF6 (2 mol%), Fe(TMPP)Cl (7.5 mol%), Hantzsch ester (3 equiv), alkene/styrene (1.0 344 
equiv), and redox active ester (2 equiv). N,N-dimethylacetamide (DMA) (0.1 M) was then added, and the vial 345 
sealed with a cap. The reaction solution was sparged with N2 for 2 minutes followed by an 8 minute sparge of the 346 
vial headspace (as a precaution for volatile substrates). Following sparging, the vial was sealed with parafilm and 347 
placed in a Penn integrated photoreactor and irradiated for 12 hours at 450 nm (100% light intensity, max fans 348 
(5200 rpm), 500 rpm stir rate). After irradiation, the reaction was diluted with H2O and Et2O and the organic layer 349 
was extracted (Et2O extraction typically performed 3x). The combined organic layers were then washed with 350 
brine, dried (MgSO4 or NaSO4), and filtered over celite. The filtrate was then concentrated under reduced vacuum 351 

Fig 3 | Scope of tri- and difluoromethyl cyclopropanation through carbene metallaphotoredox. Formal 1,2-HAT ketyl radical 

generation for carbene reactivity from β-fluoro alcohols. Experiments run with 1.0 equiv. of olefin, 2.0 equiv. carbene precursor, 3.0 equiv. 

Hantzsch ester, 7.5 mol% iron catalyst, and 2 mol% Ir photocatalyst irradiating using a Penn Integrated Photoreactor with 450 nm plates 

for 12 hours. For amine containing substrates, 1.0 equiv. trifluoromethanesulfonic acid (TfOH) was added to the reaction prior to 

irradiation. Isolated yields shown except where noted. Major diastereomer shown (d.r. reported from crude reaction mixtures and is relative 

stereochemistry around cyclopropane). See Supplementary Information for experimental details. *19F NMR yield using 4-fluoro 

methylbenzoate as an internal standard. Boc, tert-butyloxycarbonyl; Bn, benzyl; Et, ethyl; Ph, phenyl; Me, methyl; Cbz, benzyl 

oxycarbonyl; NPhth, phthalimide; Ac, acetyl; Bz, benzoyl; nProp, normal propyl; tBu; tert-butyl, iPr, isopropyl. 

 
Fig. 4 | σ-bond insertions through metallaphotoredox carbene formation. P–H, S–H, and N–H insertion is viable using carboxylic acid 

and alcohol derived precursors through iron carbene intermediates. Experiments run with 1.0 equiv. of olefin, 2.0 equiv. carbene precursor, 

3.0 equiv. Hantzsch ester, 7.5 mol% iron catalyst, and 2 mol% Ir photocatalyst irradiating using a Penn Integrated Photoreactor with 450 

nm plates for 12 hours. Isolated yields shown. See Supplementary Information for experimental details. Ph, phenyl; Me, methyl; NPhth, 

phthalimide.  

Fig 1 | Enabling carbene reactivity via radical intermediates a. Radical starting materials as alternatives to hazardous and limiting 

traditional carbene precursors. b. General approach to iron carbene reactivity through carboxylic acids, amino acids, and alcohol precursors 

using metallaphotoredox for cyclopropanation and σ-bond insertion. Me, methyl; Boc, tert-butyloxycarbonyl; Et, ethyl; Bz, benzoyl; 

Nphth, phthalimide; Ac, acetyl; Tf, trifluoromethylsulfonyl; Ts, 4-toluenesulfonyl; Ph, phenyl. LG corresponds to α-elimination leaving 

group and varies based on radical precursor utilized.  

 
Fig 2 | Scope of photoredox-enabled iron carbene cyclopropanation using carboxylic acids as precursors. α-Acetoxy, α-methoxy, α-

phenoxy carboxylic acids, α-amino acids, and α-bromo acetates can be used as carbene precursors. Experiments run with 1.0 equiv. of 

olefin, 2.0 equiv. carbene precursor, 3.0 equiv. Hantzsch ester or 3.5 equiv. AdNHSi(TMS)3, 7.5 mol% iron catalyst, and 2 mol% Ir 

photocatalyst irradiating using a Penn Integrated Photoreactor with 450 nm plates for 12 hours. For amine containing substrates, 1.0 equiv. 

trifluoromethanesulfonic acid (TfOH) was added to the reaction prior to irradiation. Isolated yields shown except where noted. Major 

diastereomer shown (d.r. reported from crude reaction mixtures and is relative stereochemistry around cyclopropane). *1H NMR yield 

using 1,3,5-trimethoxybenzene as an internal standard. See Supplementary Information for experimental details. LG, leaving group; HE, 

Hantzsch ester; Si·, AdNHSi(TMS)3; Boc, tert-butyloxycarbonyl; Bn, benzyl; Et, ethyl; Ph, phenyl; Me, methyl; Cbz, benzyl oxycarbonyl; 

NPhth, phthalimide; Ts, 4-toluenesulfonyl; Ac, acetyl; tBu, tert-butyl, iPr, isopropyl.  
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and the resulting residue was purified using flash column chromatography (SiO2) to afford the cyclopropanated 352 
product.  353 
 354 
General procedure for cyclopropanation using α-amino acid precursors. An oven dried 4 mL (≤ 0.5 mmol 355 
scale) or 40 mL vial (> 0.5 mmol scale) equipped with a stir bar was charged with the Ir(ppy)2dttbpyPF6 (2 356 
mol%), Fe(TPP)Cl (5.0 mol%), tBuHantzsch ester (3.75 equiv), alkene/styrene (1.0 equiv), and redox active ester 357 
(2.5 equiv). Acetone (0.1 M) was then added, and the vial sealed with a cap. The reaction solution was sparged 358 
with N2 for 2 minutes followed by an 8 minute sparge of the vial headspace (as a precaution for volatile 359 
substrates). Following sparging, the vial was sealed with parafilm and placed in a Penn integrated photoreactor 360 
and irradiated for 12 hours at 450 nm (10% light intensity, max fans (5200 rpm), 500 rpm stir rate). After 361 
irradiation, the reaction was diluted with H2O and Et2O and the organic layer was extracted (Et2O extraction 362 
typically performed 3x). The combined organic layers were then washed with brine, dried (MgSO4 or NaSO4), 363 
and filtered over celite. The filtrate was then concentrated under reduced vacuum and the resulting residue was 364 
purified using flash column chromatography (SiO2) to afford the cyclopropanated product.  365 
 366 
General procedure for cyclopropanation using α-bromo acetate precursors. An oven dried 4 mL (≤ 0.5 367 
mmol scale) or 40 mL (> 0.5 mmol scale) vial equipped with a stir bar was charged with the Ir(ppy)2dttbpyPF6 368 
(1.5 mol%), Fe(OEP)Cl (5.0 mol%), adamantyl aminosilane (4.50 equiv), alkene/styrene (1.0 equiv), and 369 
bromoacetate (3.5 equiv). Dichloroethane (0.1 M) was then added, and the vial sealed with a cap. The reaction 370 
solution was sparged with N2 for 2 minutes followed by an 8 minute sparge of the vial headspace (as a precaution 371 
for volatile substrates). Following sparging, the vial was sealed with parafilm and placed in a Penn integrated 372 
photoreactor and irradiated for 12 hours at 450 nm (100% light intensity, max fans (5200 rpm), 500 rpm stir rate). 373 
After irradiation, the reaction was diluted with H2O and Et2O and the organic layer was extracted (Et2O extraction 374 
typically performed 3x). The combined organic layers were then washed with brine, dried (MgSO4 or NaSO4), 375 
and filtered over celite. The filtrate was then concentrated under reduced vacuum and the resulting residue was 376 
purified using flash column chromatography (SiO2) to afford the cyclopropanated product.  377 
 378 
General procedure for cyclopropanation using β-trifluoromethyl alcohol precursors. An oven dried 4 mL (≤ 379 
0.5 mmol scale) or 40 mL (> 0.5 mmol scale) vial equipped with a stir bar was charged with the 380 
Ir(dFCF3ppy)2dttbpyPF6 (2 mol%), Fe(TMPP)Cl (7.5 mol%), Hantzsch ester (3 equiv), alkene/styrene (1.0 381 
equiv), and 2-(2,2,2-trifluoroethoxy)isoindoline-1,3-dione (2 equiv). DMA (0.1 M) was then added, and the vial 382 
sealed with a cap. The reaction solution was sparged with N2 for 2 minutes followed by an 8 minute sparge of the 383 
vial headspace (as a precaution for volatile substrates). Following sparging, the vial was sealed with parafilm and 384 
placed in a Penn integrated photoreactor and irradiated for 12 hours at 450 nm (100% light intensity, max fans 385 
(5200 rpm), 500 rpm stirrate). After irradiation, the reaction was diluted with H2O and Et2O and the organic layer 386 
was extracted (Et2O extraction typically performed 3x). The combined organic layers were then washed with 387 
brine, dried (MgSO4 or NaSO4), and filtered over celite. The filtrate was then concentrated under reduced vacuum 388 
and the resulting residue was purified using flash column chromatography (SiO2) to afford the cyclopropanated 389 
product.  390 
 391 
General procedure for cyclopropanation using β-difluoromethyl alcohol precursors. An oven dried 4 mL (≤ 392 
0.5 mmol scale) or 40 mL vial (> 0.5 mmol scale) equipped with a stir bar was charged with the 393 
Ir(dFCF3ppy)2dttbpyPF6 (2 mol%), Fe(TMPP)Cl (15 mol%), Hantzsch ester (3 equiv), alkene/styrene (1.0 equiv), 394 
and 2-(2,2,2-trifluoroethoxy)isoindoline-1,3-dione (2 equiv). DMA (0.1 M) was then added, and the vial sealed 395 
with a cap. The reaction solution was sparged with N2 for 2 minutes followed by an 8 minute sparge of the vial 396 
headspace (as a precaution for volatile substrates). Following sparging, the vial was sealed with parafilm and 397 
placed in a Penn integrated photoreactor and irradiated for 12 hours at 450 nm (10% light intensity, max fans 398 
(5200 rpm), 500 rpm stir rate). After irradiation, the reaction was diluted with H2O and Et2O and the organic layer 399 
was extracted (Et2O extraction typically performed 3x). The combined organic layers were then washed with 400 
brine, dried (MgSO4 or NaSO4), and filtered over celite. The filtrate was then concentrated under reduced vacuum 401 
and the resulting residue was purified using flash column chromatography (SiO2) to afford the cyclopropanated 402 
product.  403 
 404 
General procedure for X-H bond insertions. An oven dried 4 mL (≤ 0.5 mmol scale) or 40 mL (> 0.5 mmol 405 
scale) vial equipped with a stir bar was charged with the Ir(dFCF3ppy)2dttbpyPF6 (2 mol%), Fe(TMPP)Cl (7.5 406 
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mol%), Hantzsch ester (3 equiv), nucleophile (1.0 equiv), and redox active ester (2 equiv). DMA (0.1 M) was 407 
then added, and the vial sealed with a cap. The reaction solution was sparged with N2 for 2 minutes followed by 408 
an 8 minute sparge of the vial headspace (as a precaution for volatile substrates). Following sparging, the vial was 409 
sealed with parafilm and placed in a Penn integrated photoreactor and irradiated for 12 hours at 450 nm (100% 410 
light intensity, max fans (5200 rpm), 500 rpm stir rate). After irradiation, the reaction was diluted with H2O and 411 
Et2O and the organic layer was extracted (Et2O extraction typically performed 3x). The combined organic layers 412 
were then washed with brine, dried (MgSO4 or NaSO4), and filtered over celite. The filtrate was then concentrated 413 
under reduced vacuum and the resulting residue was purified using flash column chromatography (SiO2) to afford 414 
the σ-bond insertion product.  415 
 416 
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 455 

Extended Data Fig. 1 | Proposed mechanism for iron porphyrin carbene formation through metallaphotoredox catalysis. 

Metallaphotoredox-mediated formation of iron porphyrin carbene intermediates exploiting a single-electron reduction mediated α-

elimination. Me, methyl; Et, ethyl, Ac, acetyl; Phth, phthalimide; HEH•+, oxidized Hantzsch ester; Ir, Ir(dFCF3ppy)2dttbpy; Fe, iron 

porphyrin. For further commentary and discussion see Fig. S1.  
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Extended Data Fig. 1
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