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Over the past five decades, transition metal-catalyzed cross-
coupling has comprehensively transformed the landscape of 
molecule construction in the applied sciences, especially 
with respect to pharmaceuticals, agrochemicals and func-
tional materials (1, 2). In particular, the combination of 
three mechanistic steps––oxidative addition, transmeta-
lation, and reductive elimination––has served as a robust 
catalytic paradigm for C–C bond formation, enabling a high-
ly modular, yet general approach to fragment coupling (Fig. 
1A). While this paradigm has proven to be exceptionally 
successful for forging C(sp2)–C(sp2) bonds, it is important to 
recognize that each of these three elementary steps is less 
efficient when transition metals engage with secondary or 
tertiary alkyl fragments, limiting the development of a 
C(sp3)–C(sp3) cross-coupling platform of broad utility (3–6). 

It is intriguing to consider that enzymatic formation of 
C(sp3)–C(sp3) bonds proceeds by fundamentally different 
open-shell pathways to achieve pivotal alkylation reactions 
(7, 8). As one canonical example, methylcobalamin systems 
serve as nature’s “free radical carrier” by stabilizing other-
wise highly reactive methyl radicals (9, 10). As such, in co-
balamin-dependent radical SAM methyltransferases, 
transiently-generated carbon-centered radicals can react 
with these alkyl–cobalt complexes via bimolecular homolytic 
substitution (SH2) (Fig. 1B) (11). Although cobalamin pro-
vides critical stabilization to the reactive methyl radical, the 

methyl-cobalt bond remains notably weak (bond dissocia-
tion energy (BDE) = ~37 kcal/mol), which underpins the 
kinetic preference for the SH2 mechanism and heteroselec-
tive carbon-carbon bond formation (12). Elegant biosynthet-
ic studies have shown that the rates of such enzymatic SH2 
reactions are extremely fast (~ 108 s–1) and enable the for-
mation of sterically congested quaternary C(sp3) centers (11). 
However, despite broad biochemical relevance, SH2-based 
cross-coupling paradigms remain effectively unknown with-
in the laboratory setting outside of stoichiometric orga-
nonickel methylation or intramolecular SH-cyclizations from 
seminal contributions of Sanford, Zhang and others (13–18). 
Indeed, as Johnson stated in 1983 with respect to C–C bond 
formation, the SH2 mechanism is “seldom postulated, rarely 
discussed, and frequently discarded as improbable” (19). 

We recently questioned if a homolytic SH2 pathway in 
combination with photoredox catalysis might be exploited 
to render an alternative catalysis paradigm for C(sp3)–C(sp3) 
bond formation (Fig. 1C). Previous bioinorganic studies have 
demonstrated that both cobalt and iron porphyrins can 
serve as model systems of cobalamin, given that their re-
spective alkyl-metal complexes possess weak metal-carbon 
bonds (20, 21). These metalloporphyrins capture and release 
alkyl radicals reversibly and the equilibrium is governed by 
the well-established BDE of the metal-carbon bond (22). 
With this in mind, we recognized that such metalloporphy-
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rin catalysts might effectively partition the roles of primary 
and tertiary radicals in a cross-coupling SH2 reaction (Fig. 
2A). More specifically, electron-rich tertiary radical 3 should 
be favored to induce SH2 displacement of the primary alkyl 
fragment from 1° alkyl–Fe porphyrin 5 to generate hetero-
coupled C(sp3)–C(sp3) tertiary-primary linkages. However, 
the same 1° alkyl–Fe porphyrin 5 would be less susceptible 
to displacement by primary alkyl radical 2 given the re-
duced SOMO-nucleophilicity of primary radicals (23), a fea-
ture that should suppress the formation of 1°-1° 
homocoupled dimers. At the same time, 3° alkyl-metal por-
phyrin complex 7 is not formed in measurable equilibrium 
concentrations at room temperature (24), and its SH2 dis-
placement with other radicals (1°, 2°, or 3°) is kinetically 
slow toward due to induced non-bonding interactions (i.e., 
the pyramidalization of the 3° alkyl–Fe(III) intermediate) 
(25). As such, we postulated that the simultaneous genera-
tion of both primary and tertiary alkyl radicals in the pres-
ence of Fe-porphyrin complexes should lead to 
heteroselective C(sp3)–C(sp3) bond formation in lieu of a 
statistical combination of open-shell processes. 

Traditionally, alkyl-Fe or -Co systems are generated us-
ing Grignard reagents for alkyl transfer or via SN2 pathways 
between low-valent metal porphyrins and alkyl halides, a 
viable yet relatively slow substitution step (k = ~102 s–1 for 
iron) (26). Furthermore, these alkyl-metal complexes are 
often heat- and oxygen-sensitive, restricting the options for 
open-shell alkyl nucleophile generation. As part of our de-
sign strategy, we recognized that photoredox catalysis 
should allow simultaneous generation of both primary and 
tertiary open-shell intermediates from widely abundant 
functional groups under mild conditions. For this first 
study, we selected a silyl radical-mediated halogen abstrac-
tion-radical capture (HARC) strategy (27–29) for the facile 
oxidative generation of alkyl radicals from primary alkyl 
bromides, while access to electron-rich tertiary radicals 
from redox-active esters (readily derived from carboxylic 
acids) via reduction would ensure a net redox-neutral path-
way (30). 

It has long been recognized within medicinal chemistry 
that cyclic, quaternary centers are conformationally restrict-
ed, a structural feature that is often linked to superior po-
tency and metabolic stability in drug candidates (31, 32). 
However, only a limited number of sp3–sp3 cross-coupling 
reports to date involve the formation of all aliphatic quater-
nary carbons, and these methods typically rely on highly 
reactive tertiary Grignard reagents or alkyl iodide electro-
philes (33–36). We felt that the use of readily available re-
dox-active esters and alkyl bromides as modular coupling 
fragments, in conjunction with the capacity of SH2 for 
mechanistic partitioning, should lead to a generically useful 
C(sp3)–C(sp3) cross-coupling method, thereby expanding the 

chemical space of sp3-rich scaffolds that can be readily ex-
plored by medicinal chemists (37). 

A description of our proposed mechanism for cross-
coupling is outlined in Fig. 2A (see fig. S1 for a detailed pro-
posal). Upon visible light excitation, the photocatalyst 
[Ir(FMeppy)2(dtbbpy)][PF6] [FMeppy = 2-(4-fluorophenyl)-5-
(methyl)pyridine; dtbbpy = 4,4'-di-tert-butyl-2,2'-
bipyridine)] (11) would access a long-lived triplet excited 
state species (lifetime τ = 1.1 µs) (38). This oxidizing Ir com-
plex [E1/2

red (*IrIII/IrII) = +0.77 V versus saturated calomel 
electrode (SCE) in CH3CN] can undergo single electron 
transfer (SET) with the aminosilane reagent (Ep

ox = +0.86 V 
versus SCE in DMA/tert-amyl alcohol) to generate a reduced 
Ir(II) complex (39). The oxidized silane reagent would gen-
erate a reactive silyl radical, which readily abstracts a bro-
mine atom from alkyl bromide 1 (39). The resulting primary 
alkyl radical 2 is expected to be captured by the Fe(II) por-
phyrin catalyst 6 at near diffusion-controlled rates to fur-
nish 1° alkyl–Fe(III) intermediate 5 (40). Concurrently, the 
reduced Ir(II) complex [E1/2

red (IrIII /IrII) = –0.94 V versus 
SCE in CH3CN) can reduce redox-active ester 4 via SET to 
furnish tertiary radical 3 upon extrusion of carbon dioxide 
and phthalimide (30). This matched combination of tertiary 
radical 3 with 1° alkyl–Fe(III) radicalphile 5 would lead to a 
successful SH2 reaction, affording cross-coupled product and 
regenerating the Fe(II) catalyst. 

With this mechanistic proposal in mind, we examined 
the cross-coupling between tertiary redox-active ester 8 and 
primary alkyl bromide 9, both of which were selected on the 
basis of medicinal chemistry relevance (Fig. 2B). To our de-
light, we identified that the commercial complex Fe(OEP)Cl 
[OEP = 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine] as an 
effective SH2 catalyst, in tandem with photocatalyst 11 and 
the aminosilane reagent (TMS)3SiNHAdm to deliver the 
quaternary carbon-bearing alkylation adduct 10 in 70% 
yield upon blue light irradiation. Control experiments re-
vealed that all of the employed components were necessary 
for optimal reaction performance and, importantly, without 
Fe(OEP)Cl only 13% yield of the desired product was ob-
served, a result of free-radical background coupling (fig. S2). 
Initial kinetic studies revealed that the reaction is 0th order 
in both of the fragment coupling substrates and 1st order in 
photocatalyst and light intensity (see supplementary mate-
rials). However, an intriguing inverse order in the SH2 cata-
lyst, Fe(OEP)Cl, was observed. We subsequently determined 
that the iron porphyrin catalyst acts as an optical filter due 
to strong absorbance at 450 nm, thereby decreasing the 
photonic power available for the photoredox cycle in a re-
ciprocal relationship to the concentration of the SH2 cata-
lyst. Indeed, with this information in hand, we recognized 
that similar levels of reaction efficiency should be achieved 
when the Fe(OEP)Cl loading is decreased (2 mol%) in pro-
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portion to light intensity, a hypothesis that was readily sub-
stantiated (fig. S4). Importantly, the use of lower Fe porphy-
rin loadings allows for this coupling protocol to be scaled 
without loss in efficiency, a useful insight especially when a 
lower light intensity apparatus is employed. 

With optimal conditions in hand, we next examined the 
generality of our cross-coupling protocol with respect to the 
carboxylic acid component (Fig. 3). Bulky α-substitutions on 
pyrrolidine such as isopropyl and benzyl groups were well-
tolerated to furnish tertiary amine-bearing cross-coupled 
adducts in excellent yield (15 and 16, 71% and 80% yield), 
underscoring the capacity of the SH2 mechanism to general-
ly construct sterically-hindered centers. Redox-active esters 
containing electron-deficient backbones (i.e., azetidine and 
difluoropyrrolidine) were found to be viable coupling part-
ners and underwent alkylation in good yields (17 to 19, 46% 
to 69% yield). In addition, bulky α-functionalized exocyclic 
or acyclic amines could be accessed via cross-coupling in 
good efficiencies (20 and 21, 64% and 51% yield). Further-
more, the use of tertiary redox-active esters enabled the 
formation of quaternary carbons, as represented in the acy-
clic tert-butyl moiety and a cyclic β-substituted pyrrolidine, 
as well as a medicinally important cyclic sulfone (22 to 24, 
47% to 63% yield) (41). For α-oxy esters, radicals generated 
adjacent to both phenoxy and methoxy substituents can par-
ticipate in cross-coupling with respectable efficiencies, 
providing a new entry to the synthesis of hindered ethers 
(25 and 26, 50% and 68% yield). Finally, secondary redox-
active esters can also be used in our metallaphotoredox pro-
tocol to couple with primary bromides in good yields (27 to 
29, 50% to 65% yield). On the other hand, tertiary benzylic 
radical was found to be a challenging SH2 reaction partner, 
presumably due to the diminished radical nucleophilicity 
(for additional examples and limitations of substrate scope, 
see fig. S12). 

Next, we examined the scope of alkyl bromides using 
both α-heteroatom and tertiary redox-active esters as the 
representative coupling partners. Small alkyl fragments 
such as methyl and ethyl can be introduced into sp3-
scaffolds in high efficiencies (30 to 33, 59% to 84% yield). 
Methyl bromide was generated in-situ via the combination 
of methyl tosylate and tetrabutylammonium bromide, 
whereas the use of methyl iodide led to diminished reactivi-
ty. Importantly, no isomerization was observed in the alkyl-
ated product 33 when 1-bromoethane-1,1-d2 was subjected to 
our reaction, demonstrating the orthogonality of the SH2 
mechanism to reductive elimination for C–C bond for-
mation. Furthermore, 2-methylproline-derived redox-active 
esters could be alkylated with α- and γ-haloesters, providing 
straightforward access to homologated amino acids inacces-
sible via conjugate addition (34 and 35, 33% and 76% 
yield). A wide variety of functionalized alkyl bromides were 

successful coupling partners and furnished value-added 
products in good to high yields (36 to 45, 47% to 75% yield). 
The core heterocyclic fragments in aripiprazole (40), ge-
fitinib (42) and benzydamine (45) were well-tolerated in 
the cross-coupling, demonstrating the applicability of our 
method to medicinal chemistry campaigns. Finally, we em-
ployed 1,3- and 1,4-bromo, chloro-alkyls as bifunctional link-
ers which, after decarboxylative coupling, readily underwent 
intramolecular cyclization to directly construct medicinally-
relevant, spirocyclic structures. This formal decarboxylative 
cycloaddition strategy was successfully applied to the syn-
thesis of [5.6], [4.5], and [4.6] ring systems (47, 49 and 51), 
providing a new and general approach to these synthetically 
challenging heterocycles from simple starting materials 
(42). 

Finally, we performed detailed mechanistic experiments 
to support the proposed catalytic cycle and the intermediacy 
of 1° alkyl–Fe(III) species (Fig. 4 and fig. S9). Fluorescence 
quenching experiments confirmed the reductive quenching 
of the excited iridium photocatalyst 12 by aminosilane rea-
gent 52 at a near diffusion-controlled rate (k = 6.7 × 108 M–1 
s–1), whereas the α-amino redox-active ester 53 was not 
found to be an effective quencher (fig. S9). In order to probe 
the intermediacy of the proposed alkyl–Fe(III) species, we 
employed photoNMR techniques to monitor the cross-
coupling between 1-bromobutane and α-amino redox-active 
ester 53 under our standard reaction conditions (Fig. 4A). 
By comparing these in situ spectra with an independently 
prepared n-Bu–Fe(OEP) complex (43), we directly observed 
the formation of the alkyl–iron porphyrin intermediate, and 
the concentration of this species was observed to slowly in-
crease upon light exposure and persist throughout the reac-
tion. Furthermore, to demonstrate the catalytic relevance of 
the observed alkyl–Fe(III) species, we investigated the use of 
10 mol% of the previously isolated n-Bu–Fe(OEP) adduct as 
both a catalytic intermediate and precatalyst in the cross-
coupling of redox-active ester 53 and primary bromide 55 
(Fig. 4B). Gratifyingly, the desired product 14 was observed 
in 64% yield, similar to the efficiencies observed when 
Fe(OEP)Cl was used as the SH2 precatalyst, and notably, the 
n-butyl group was also incorporated into the alkylated 
product (54), providing direct evidence for the participation 
of the Fe(III)–alkyl species in the cross-coupling reaction. 
Finally, given that the alkyl–Fe bonds of porphyrin com-
plexes are known to homolyze under light irradiation to 
release alkyl radicals, it was unclear if the carbon–carbon 
formation proceeds through free radical-radical coupling or 
the proposed SH2 pathway. We sought to determine if light 
is required in the C–C bond formation (Fig. 4C). When the 
independently generated n-Bu–Fe(OEP) complex was sub-
jected to an α-amino radical arising from redox-active ester 
53 under non-photonic conditions (i.e., using zinc as the 
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single-electron reductant) (44), the corresponding alkylation 
product was observed in good yield, indicating that the C–C 
bond formation is not dependent upon photoexcitation of 
the SH2 catalyst. Additionally, performing the same experi-
ment under blue light irradiation led to the identical level of 
product formation, a result which aligns with the mechanis-
tic interpretation that blue light is only required for the 
photoredox cycle, yet is not involved in the C–C bond for-
mation step. Furthermore, the iron porphyrin catalyst was 
able to achieve a degree of diastereocontrol during the 
cross-coupling of a β-chiral alkyl bromide 56 with redox-
active ester 53 (Fig. 4D). While free radical coupling with-
out iron led to unselective diastereomer formation (1 to 1.1 
d.r.), the addition of iron porphyrin catalyst favored one 
major diastereomer in 3.2 to 1 diastereocontrol, providing 
further evidence for a concerted SH2 mechanism and the 
participation of the iron-bound alkyl complex in the critical 
C–C bond forming event. 
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Fig. 1. Biomimetic C(sp3)–C(sp3) cross-coupling via dual iron/photoredox catalysis. R, alkyl group; Phth, 
phthalimide; Boc, tert-butoxycarbonyl group; Cbz, benzyloxycarbonyl group. 
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Fig. 2. Reaction design and development. (A) Proposed mechanism for the metallaphotoredox sp3–sp3 cross-coupling 
using iron porphyrin. (B) Representative reaction scheme. t-Bu, tert-butyl group; Me, methyl group; Et, ethyl group. 
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Fig. 3. Photoredox and iron-catalyzed C(sp3)–C(sp3) cross-coupling: Redox-active ester and alkyl bromide scope. All yields 
are isolated. See supplementary materials for detailed reaction conditions. TMS, trimethylsilyl group; Adm, 1-adamantyl; KOAc, 
potassium acetate; iPrOH, isopropanol; Ar, 3-chloro-4-fluorophenyl; N*, phthalimide. *With KOAc and Zn(OAc)2 as bases. †With 
Zn(OAc)2 as the base. ‡With Ir(ppy)2(dtbbpy)PF6 as the photocatalyst. §With 2 equivalents of methyl p-toluenesulfonate and 
tetrabutylammonium bromide. ||With Ir[dF(CF3)ppy]2(dtbbpy)PF6 as the photocatalyst. ¶Sodium hydride, 60°C. 
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Fig. 4. Mechanistic studies for the proposed catalytic cycle and evidence of the intermediacy of alkyl–Fe(III) 
species. n-Bu, n-butyl group; ZnCl2, zinc chloride; d.r., diastereomeric ratio. 
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